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1 Heat Equation and Weyl’s Law

Our goal in this first part is to introduce Weyl’s Law: one can hear the volume
(and dimension) of a drum. This is arguably the first, and still perhaps the most
important, result of spectral geometry. In its original form it was first proved by
Hermann Weyl in 1911, with many refinements and generalizations that appear
later. First we need to introduce several important concepts of mathematics
and physics.

1.1 The Spectrum of a Bounded Domain

1. When we play a drum, we can hear different modes of vibrations with
different frequencies. It is a mathematical theorem that fundamental fre-
quencies of any object/shape form a sequence

ν1 ≤ ν2 ≤ ν3 ≤ · · · → ∞

2. These frequencies are easily obtained from the spectrum of the Laplacian
operator that we define below. The spectrum of a shape contains a huge
amount of information about its geometry.

Laplacian in Rn:

∆ = −
n∑
i=1

∂2

∂x2
i

.
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Fig. 1: Is there a relation between the shape of a drum and its frequencies?

3. An eigenvalue problem for a bounded domain M ⊂ Rn with piecewise
smooth boundary: {

∆u = λu

u|∂M = 0, u 6= 0.

This type of boundary condition (vanishing on the boundary) is called
Dirichlet boundary condition. There are other types of boundary con-
ditions (Neumann, mixed, etc.), but we shall mostly focus on Dirichlet
boundary conditions.

4. The spectrum: It is a remarkable fact that the above problem has a non-
trivial solution only for a discrete set of non-negative numbers

0 < λ1 ≤ λ2 ≤ · · · → ∞

This set of values is called the Dirichlet spectrum of the domain M :

Spec(M) = {λ1, λ2, · · · }

For each eigenvalue λ, the corresponding function u is called an eigenfunc-
tion. It is also known that each eigenvalue λ has finite multiplicity. They
can have simple (or non-degenerate) eigenvalues or degenerate eigenvalues.

5. Isospectral versus Isometric: Domains M1 and M2 are called isospectral
if they have the same spectrum (including multiplicities), and isometric
if we can move one to other by an Euclidean motion. Isometric domains
are isospectral (why ?), but the converse is not true (we shall see two 16
dimensional spaces that are isospectral, but not isometric! See Figure 2
for a two dimensional example.).

6. What is spectral geometry? It is mathematics/physics discipline that
allows one to extract information about the geometry of a space from the
knowledge of its spectrum.
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Fig. 2: Isospectral but not isometric

7. Example: The spectrum of a violin string. Here M = [0, a] is a closed
interval of length a. {

−u′′ = λu

u(0) = u(a) = 0

The solutions are

un(x) =

√
2

a
sin

πnx

a
, λn = (

πn

a
)2, n = 1, 2, 3, · · ·

Note that all eigenvalues are simple (non-degenerate). The fact that
un, n ≥ 1 form an orthonormal basis for L2(M) can be independently
proved using Fourier theory.

8. Example: Spectrum of a rectangular drum: M = [0, a]× [0, b]. Eigenfunc-
tions:

um,n(x, y) = sin
πmx

a
sin

πny

b
,m, n = 1, 2, 3, · · ·

Eigenvalues

λm,n = (
πm

a
)2 + (

πn

a
)2



1 Heat Equation and Weyl’s Law 5

λ = π

√
m2

a2
+
n2

b2
, m, n ≥ 1.

9. Example: spectrum of a Circular Drum: Laplacian in polar coordinates

∆ = −
(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
0 ≤ r < a, 0 ≤ θ ≤ 2π

Radially symmetric solutions

u(r, θ) = u(r)

Sub in and get

−
(
∂2u

∂r2
+

1

r

∂u

∂r

)
= λu

or
r2u” + ru′ + λr2u = 0

Recall: Bessel differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0.

Let α = 0. The only Bounded solutions: Bessel functions J0n(x)
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The Bessel function J0 has an infinite number of positive roots,

0 < α01 < α02 < · · ·

So:

u(r) = J0

(α0n

a
r
)

is an eigenfunction with eigenvalue α0n

a .

For non radially symmetric solutions we put

u(r) = Jm(λmnr), m = 0, 1, . . . , n = 1, 2, . . . ,

where λmn = αmn/a, with αmn the n-th positive root of Jm. So

Spec(circular drum) = {λmn}

The spectrum of a circular drum is the set of positive roots of Bessel
functions.

The smallest eigenvalue: the fundamental frequency is

λ1 =
α01

a
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with α01 = 2.405. Compare this with the smallest frequency of a string of
length a which is

λ1 =
π

a
,

with π = 3.142.

Another big difference between a circular drum and a string: eigenvalues
of a string are in arithmetic progression; eigenvalues of of a drum are so
random and out of proportion!

1.2 The Wave Equation

1. The spectrum of a domain is closely related to frequencies of its funda-
mental modes of vibrations. These vibrations satisfy the wave equation.

2. Wave equation:
∂2u

∂t2
= −c2∆u,

where c is the wave speed. We assume c = 1.

3. Assume the drumhead is clamped at its boundary. Look for a solution

u(x, t) = u(x)eiωt

we get
∆u = ω2u

So
ω =
√
λ

that is the frequencies of a drum are square roots of its spectrum.
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1.3 Weyl’s Law

1. Idea: the area of M can be obtained from its spectrum.

2. Eigenvalue counting function: total number of eigenvalues less than or
equal to a given λ

N(λ) = #{λi ≤ λ}

3. For a bounded domain M with piecewise smooth boundary in Rn

N(λ) ∼ ωnVol(M)

(2π)n
λn/2 λ→∞

where ωn is the volume of the unit ball in Rn

4. Eigenvalue growth: how fast λk grows as k →∞? Weyl’s law is equivalent
to

λk ∼ Ck
2
n k →∞,

with

C =
4π2

(ωnVol(M))
2
n

1.4 The Heat Equation

1. Let M be a domain as before . The heat equation
∂ϕ
∂t = −∆ϕ

ϕ(x, 0) = ϕ0(x)

ϕ(x, t) = 0, ∀x ∈ ∂M, t ≥ 0.

is the evolution equation for distribution of temperature on M given the
initial (t = 0) distribution by ϕ0.

2. It has a formal solution given by

ϕ(x, t) = e−t∆ϕ0, t > 0

1.5 The Heat Kernel

1. We give several equivalent definitions of the heat kernel:

• As the fundamental solution: this is a function

K(t, x, y) : R>0 ×M ×M → R

such that

∂K

∂t
(t, x, y) = −∆K(t, x, y) for all t > 0 and x, y ∈ M,
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lim
t→0

K(t, x, y) = δx(y) for all x, y ∈ M,

in the sense of distributions, that is for all f ∈ C∞c (M) we have∫
M

K(t, x, y)f(y)dV oly → f(x) as t→ 0+

K(t, x, y) = 0, x ∈ ∂M or y ∈ ∂M.

• The heat kernel is the kernel of the integral operator e−t∆ :

e−t∆f(x) =

∫
M

K(t, x, y)f(y)dy

• A formula for K in terms of eigenvalues and eigenfunctions of ∆.

K(t, x, y) =

∞∑
n=0

e−λntφn(x)φn(y).

2. What is the physical meaning/significance of K(t, x, y)? Assume we have
fixed x in M and assume that the initial (i.e. at t = 0) temperature
distribution is a delta function at x, δ(x), for x ∈ M . So roughly we can
imagine an initial temperature distribution which is equal to 0 away from
x and is 1 at x. Then K(t, x, y) gives the distribution of temperature at
all times t > 0 and for all points y ∈M.

3. Example: Heat Kernel for R. We check that

K(t, x, y) = (4πt)−
1
2 e−

(x−y)2
4t

is the fundamental solution of the Laplacian on R. We need just one fact:∫
R

(4πt)−
1
2 e−

(x−y)2
4t dy = 1, ∀x, ∀t > 0

To show that for all x and all f with compact support we have∫
R
K(t, x, y)f(y)dy → f(x) t→ 0

we write, for a given x

f(y) = f(y)− f(x) + f(x)

and estimate, using Taylor’s expansion near x:

|f(x)− f(y)| ≤M |x− y| for |x− y| ≤ δ
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Then we write∫
R
K(t, x, y)f(y)dy =

∫
R
K(t, x, y)(f(y)− f(x) + f(x))dy

∫
R
K(t, x, y)(f(y)− f(x))dy +

∫
R
K(t, x, y)f(x)dy

The second integral is equal to f(x) for all t > 0 and to estimate the first
we write it as ∫

|x−y|≥δ
+

∫
|x−y|≤|δ|

The first integral goes to 0 as t → 0 (for any f in fact of polynomial
growth) and the second integral can be estimated by∫

R

4. Heat kernel for a circle. Let S1 = R/Z, denote a circle of radius 1
2π . We

give two expression for the fundamental solution of the heat equation on
a circle. First by averaging the fundamental solution for R over Z. This
gives

K(t, x, y) =
∑
n∈Z

(4πt)−
1
2 e−

(x−y−n)2

4t

It is easy to see that this is indeed the fundamental solution of the heat
equation for the circle.

On the other hand we can use the general formula

K(t, x, y) =
∑

e−λntϕn(x) ¯ϕn(y)

to find the fundamental solution. For circle we have

λn = 4π2n2, ϕn(x) = e2πinx, n ∈ Z

which will give us the formula

K(t, x, y) =
∑
n∈Z

e−4π2n2te2πin(x−y)

Now the equality of two fundamental solutions (uniqueness) give us the
identity ∑

n∈Z
e−4π2n2te2πinx =

∑
n∈Z

(4πt)−
1
2 e−

(x−n)2

4t
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5. Heat kernel for flat tori. Let Γ ⊂ Rn be a lattice and

M = Rn/Γ

the flat torus defined by Γ. In a similar fashion we give two formula for
the fundamental solution

K(t, x, y) =
∑
n∈Γ

(4πt)−
n
2 e−

(x−y−n)2

4t

which is obtained by averaging the fundamental solution for Rn over Γ
(method of images). Alternatively we have

K(t, x, y) =
∑
n∈Γ∗

e−4π2n2te2πin·(x−y)

The fact that these two are the same is equivalent to Jacobi’s inversion
formula for lattice theta series.

1.6 Eigenvalues and Eigenfunctions of Flat Tori and Weyl’s
Law

1. We give two proofs of Weyl’s law for flat tori: one is technical and based on
a trace formula and a Tauberian theorem, while the second is completely
elementary and is based on estimating integral lattice points in a Euclidean
ball and showing that as the radius of the ball goes to infinity the number
of lattice points is proportional to the volume of the ball.

2. Square tori. Let Γ = Zd be the standard lattice and

Td = Rd/Zd

Then eigenvalues of Laplacian are labelled by points of Zd and are

λm = 4π2(m2
1 + · · ·+m2

d) m ∈ Zd

Alternatively, let r(n) denote the number of ways one can represent n as
a sum of d squares. Then eigenvalues of ∆ are the numbers 4π2n, n ≥ 0,
with multiplicity r(n).

Weyl’s Law in this case: Let

N(λ) = number of eigenvalues, with multiplicity, smaller than or equal toλ

So: we are looking for the number of points with integral coordinates
inside the ball of radius

r =

√
λ

2π
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An elementary argument shows that this number is asymptotically given
by the volume of the all of radius 2πr (error is of the order rd−1

N(λ) ∼ β(d)

(2π)d
λd/2

Note: the best formula for the second term is still missing! (Gauss circle
problem).

Eigenfunctions of ∆ are also labeled by Zd and are

em(x) = e2πix·m, m ∈ Zd.

By Fourier theory, we know that em, m ∈ Zd form an orthonormal basis
for L2(Td).

3. Tori in general. Let us start with dimension one. Let

S1 = R/LZ

denote a circle of length L > 0 with its Riemannian metric induced from
the standard metric on R. Its Laplacian is

∆ = − d2

dx2

Eigenvalues and eigenfunctions of ∆ are labeled by the dual lattice L−1Z:

λn = 4π2(L−1n)2, n ∈ Z,

en(x) = e2πiL−1nx.

The heat kernel can be computed explicitly as

k(t, x, y) =
∑
n∈Z

e−λnten(x) ¯en(y) =
∑
n∈Z

e−4π2(L−1n)2(x−y)

Then the heat trace is

Tre−t∆ =
∑
n∈Z

e−λnt =
∑
n∈Z

e−4π2/L2n2t.

To find its asymptotic expansion near 0, we use the Poisson summation
formula and obtain an exact trace formula

L

(4πt)1/2

∑
γ∈Γ

e−4π2L2n2/4t (t→ 0)

Next, we look at flat n-dimensional tori. Let Γ ⊂ Rd be a compact lattice.
The Laplacian for the flat torus M = Rd/Γ is

∆ = −
d∑
i=1

∂2

∂x2
i



1 Heat Equation and Weyl’s Law 13

Let Γ∗ denote the dual lattice

Γ∗ = {x ∈ Rd : 〈x, y〉 ∈ Z forally ∈ Γ}

For Γ = (LZd, we have Γ∗ = (L−1Z)d.

Eigenvalues and eigenfunctions of ∆ are labeled by points γ∗ ∈ Γ∗ of the
dual lattice:

λγ∗ = 4π2||γ∗||2,

eγ∗ = e2πi〈γ∗,x〉.

Notice that the length spectrum of M , that is the lengths of closed geodesics
representing free homotopy class of closed loops in M are parametrized by
elements of Γ, and are given by

||γ||, γ ∈ Γ.

(first think about circles and then move up)

Using Poisson summation formula, we obtain a trace formula for the heat
trace of ∆, and a relation between the two spectra:∑

γ∗∈Γ∗

e−4π2||γ∗||2t =
Vol(M)

(4πt)d/2

∑
γ∈Γ

e−||γ||
2/4t

for all t > 0. And from this we obtain the asymptotic expansion of the
heat trace Tre−t∆:

Tr
∑

e−tλi ∼ Vol(M)

(4π)d/2
t−d/2, (t→ 0).

Using Karamata’s Tauberian Theorem, we can relate N(λ) to Vol (M)
(Weyl’s Law):

N(λ) ∼ β(d)Vol(M)

(2π)d
λd/2 λ→∞

We see that: one can hear the volume of a flat torus (Weyl’s Law)

Remark 1.1. This proof of Weyl’s law for tori, based on heat trace asymp-
totics, is kind of complicated: we used a trace formula (Poisson summation
formula), and Karamat’s Tauberian theorem. As we saw before one can
instead give a purely elementary proof, based on counting lattice points
inside balls.

1.7 Problems

1. Prove the formula of Laplacian in polar coordinates we used in the first
lecture.
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2. Derive the formula of 3-d Laplacian in spherical coordinates.

3. Can you say why the spectrum is a real number? why it cannot be nega-
tive, and why it cannot be zero? (Hint: compare with a situation in linear
algebra where we have a matrix of the form A = DD∗. Can you answer
these questions for this matrix, assuming D has a trivial kernel. You need
to define a vector space with an inner product and interpret the Laplacian
as an operator on that space).

4. What is the importance of the first eigenvalue? We shall introduce the
energy of a function on a domain and will see that the first eigenvalue is
the smallest possible energy among all nonzero functions.

2 Laplacian

Our goal in this part is to show that the Laplacian on a bounded domain with
Dirichlet boundary conditions is an essentially self-adjoint operator and present
the spectral decomposition theorem for Laplacians. The self-adjoint property
of the Laplacian is a consequence of the divergence theorem of multivariable
calculus. Let us recall this result first.

2.1 Divergence Theorem

1. Gradient and Divergence: Let M ⊂ Rn be a bounded domain with piece-
wise smooth boundary, and let f : M → R be a smooth function, i.e.
f ∈ C∞(M). The gradient of the function f is the vector field

grad f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
.

Let Vect(M) denote the space of all smooth vector fields on M . It is an
(infinite dimensional) vector space. Now

grad : C∞(M)→ Vect(M)

is a linear operator since

grad (αf + βg) = α grad f + β grad g.

for all α, β ∈ R, f, g ∈ C∞(M).

Let X be a smooth vector field on M. The divergence of the vector field
X is the function

div X =
∑ ∂X

∂xi
.

Notice that the Laplacian is equal to

∆ = − div · grad
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Proof. On the one hand

∆ = −
n∑
i=1

∂2f

∂2xi
.

And on the other hand

− div · grad f = − div ·
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
= −

(
∂2f

∂2x1
+ . . .+

∂2f

∂2xn

)
.

Theorem 2.1 (Divergence theorem). Let M ⊂ Rn be a domain with
piecewise smooth boundary. Let X be a smooth vector field on M and ~n
the unit outward normal vector. Then∫

M

div Xdv =

∫
∂M

X · ~n dA.

Here is a nice Corollary of the divergence theorem. Let C∞0 (M) denote
the space of smooth functions on M that vanish on the boundary.

Proposition 2.1. For all f ∈ C∞0 (M), X ∈ V ect(M)

〈 grad f,X〉 = 〈f,−div X〉 .

Notice that the inner product on C∞(M) is 〈·, ·〉 : C∞(M)×C∞(M)→ R
such that 〈f, g〉 =

∫
M
fg dv. And the inner product on Vect (M) is

〈X,Y 〉 =

∫
M

n∑
i=1

XiYi dv =

n∑
i=1

〈Xi, Yi〉 .

Proof. Apply theorem 2.1 to the vector field fX.∫
M

div fXdv =

∫
∂M

fX · ~n dv = 0.

Since
f |∂M = 0, and therefore fX|∂M = 0.

It is easy to see that∫
M

div fXdv =

∫
M

fdiv Xdv +

∫
M

grad f Xdv.

Hence
〈f, div X〉+ 〈grad f,X〉 = 0.
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2. Properties of the Laplacian:

Let T : V →W be a linear operator. We define an adjoint operator T ∗ to
be the operator such that far all x ∈ V, y ∈W

〈Tx, y〉 = 〈x, T ∗y〉 .

Using proposition 2.1 we can say that (grad)∗ = −div. But we know that
∆ = −div ◦ grad = (grad)∗ ◦ grad. Let ∇ = grad then ∆ = ∇∗∇.

(a) The Laplacian ∆ is a self-adjoint operator, i.e. for all f, g ∈ C∞0 (M)

〈∆f, g〉 = 〈f,∆g〉 .

(b) 2nd Green’s identity:

〈∆f, g〉 = 〈∇f,∇g〉 = 〈f,∆g〉 .

Proof. Apply Divergence theorem to the vector field f∇g, for

f, g ∈ C∞0 (M) we can obtain∫
M

div (f∇g)dv =

∫
M

∇f ∇gdv −
∫
M

f∆gdv =

∫
∂M

f∇g ~ndA = 0.

Hence
〈∇f,∇g〉 = 〈f,∆g〉 .

And we can apply Divergence theorem to the vector field g∇f then∫
M

div (g∇f)dv =

∫
M

∇f ∇gdv −
∫
M

g∆fdv =

∫
∂M

g∇f ~ndA = 0.

Since
〈∇f,∇g〉 = 〈g,∆f〉 .

2.2 Spectrum of Laplacian

Corollary 2.1.
Spec(∆) ⊂ (0,∞).

Proof. Let ∆f = λf . We will prove that λ ∈ (0,∞). From 2nd Green’s identity

〈∇f,∇f〉 = 〈∆f, f〉
= 〈λf, f〉
= λ 〈f, f〉 > 0

So λ > 0. Assume M is connected. The Laplacian ∆f = 0, then

0 =< ∆f, f >=< ∇f,∇f > .

Therefore ∇f = 0, i.e. ∂f
∂xi

= 0,∀i which means that f is constant on M .
Since f |∂M= 0, then f = 0 on M .
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Corollary 2.2. For λ1 6= λ2, u1 ⊥ u2, i.e. < u1, u2 >= 0.{
∆u1 = λ1u1

M u2 = λ2u2

Proof. Using 2nd Green’s identity for u1, u2

〈∆u1, u2〉 = 〈u1,∆u2〉 = 〈∇u1,∇u2〉

we can get
< λ1u1, u2 >=< u1, λ2u2 >

⇒ (λ1 − λ2) 〈u1, u2〉 = 0.

Since λ1 6= λ2, then < u1, u2 >= 0.

1. For the Laplacian ∆ on M we have
∆u = λu

u |∂M= 0

u 6= 0

From this, we get: spec(∆) = {0 < λ1 6 λ2 6 ...→∞}
Since 〈u, u〉 6= 0, we can normalize u, such that < u, u >= 1. Eigenspace
of λ is

Eλ = {u ∈ C∞0 (M) | ∆u = λu}

2. Fact: dimEλ <∞, ∀λ ∈ spec(∆).

simple (non-degenerate) eigenvalue: dimEλ = 1,

degenerate eigenvalue: dimEλ > 1.

2.3 Orthogonal Decomposition Theorem

Theorem 2.2. Let u1, u2, ... be normalized eigenfunctions for eigenvalues λ1, λ2, ...,
then {un}∞n=1 is an orthonormal basis for H = L2(M), i.e. ∀f ∈ L2(M), we
can write

f =

∞∑
n=1

anun, an ∈ R

Note: L2 − convergence:

||f −
N∑
n=1

anun|| → 0, N →∞
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2.4 Spectral Decomposition of Laplacian S1

1. Spectral decomposition of Laplacian is a main statement of Fourier series
{e2πinx | n ∈ Z} is an orthonormal basis for L2(S1).

2. Example: Circular Drums

spec(∆) =
J0 : α01, α02, α03, α04, · · ·

J1 : α11, α12, α13, α14, · · ·

J2 : α21, α22, α23, α24, · · ·

J3 : α31, α32, α33, α34, · · ·

We can see that as n increases, the first root of Jn gets larger.

Note that for a circular drum, all eigenvalues are simple, and the corre-
sponding functions are unm = Jn

(
αnm
a x

)
.

2.5 A Nice Formula for Heat Kernel

1. Here is a nice formula for Heat Kernel:

K(t, x, y) =

∞∑
i=1

e−λntun(x)un(y)
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where 0 ≤ λ1 ≤ λ2 ≤ λ3 · · · ≤ ∞ is the spectrum of ∆, and u1, u2, u3, · · ·
are the orthonormal eigenfunctions. (Note that we assume real-valued
functions here.)

Proof. Forgetting about the convergence.

(a) wts: ∀x, ∂K
∂t = −∆yK

∂K

∂t
=
∑ ∂e−λntun(x)un(y)

∂t

=
∑
−λne−λntun(x)un(y)

=
∑
−e−λntun(x)∆un(y)( since λnun(y) = ∆yun(y))

= −∆
(∑

e−λntun(x)un(y)
)

= −∆yK(t, x, y)

(since ∆ is a linear operator: ∆(f+g) = ∆f+∆g, ∆cf = c∆f, ∆ (
∑
fn) =∑

∆fn)

(b) Boundary conditions: K(t, x, y) = 0 if x ∈ ∂M or y ∈ ∂M. Ok, since
un satisfies boundary conditions.

(c) wts: K(t, x, y)→ δx (y) as t→ 0, i.e.
∫
M
K(t, x, y)f(y)dy → f(x) as

t→ 0.

Expand f(y) =
∑∞
n=1 anun(y) (since {un}∞n=1 form an orthonormal

basis).

∫
M

(

∞∑
n=1

e−λntun(x)un(y)

∞∑
m=1

amum(y))dy =

=

∞∑
n,m=1

e−λntun(x)

∫
M

amun(y)um(y)dy

=

∞∑
n=1

e−λntanun(x).

lim
t→∞

∞∑
n=1

e−λntanun(x) =

∞∑
n=1

lim
t→∞

e−λntanun(x) =

∞∑
n=1

anun(x) = f(x).
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3 Eigenvalue Inequalities

Our goal in this part is to: 1) Define the Dirichlet energy of a map and establish
some important eigenvalue inequalities, in particular the Max-Min principle,
and 2) review Mark Kac’s proof of Weyl’s law based on Wiener measure and
a Tauberian theorem. We also review the Poisson Summation Formula in this
section.

3.1 The Dirichlet Energy

1. Let M ⊂ Rn be a bounded domain with piecewise smooth boundary. The
Dirichlet Energy of u : M → R (smooth) is defined as

E(u) =

∫
M

〈5u(x),5u(x)〉 dx

=

∫
M

n∑
i=1

(
∂u

∂xi
)2dx

= 〈5u,5u〉

(5u ∈ V ect(M)) Note that E(u) ≥ 0.

2. Here are some examples in dimensions 1 and 2.

E(u) =

∫ b

a

u′(x)2dx,

E(u) =

∫ ∫
M

[
(
∂u

∂x
)2 + (

∂u

∂y
)2

]
dxdy

3. We need to know what is the relation between this notion of energy and
the eigenvalues and eigenfunctions of Laplacian? The following variational
principle, known as the Dirichlet principle, shows that critical values of
the Dirichlet energy correspond to eigenvalues and eigenfunctions of the
Laplacian:

Proposition 3.1. (The Variational Principle; Dirichlet Principle) Let
u ∈ C∞0 (M) be a critical point of E. Then

∆u = λu

for a suitable λ.

4. Using the orthogonal decomposition theorem, we can state a much precise
relation between minima of the Dirichlet energy and the eigenvalues of
the Laplacian. In particular the first eigenvalue is the minimum of E
restricted to functions with norm one:
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Proposition 3.2. (Minimum Energy Principle) For the first eigenvalue
of the Laplacian we have

λ1 = min{E(u)| 〈u, u〉 = 1} = min{ E(u)

〈u, u〉
|u 6= 0}

Proof. Let u1, u2, u3, ... be o.n. basis for L2(M) of eigenfunction s.t.
∆ui = λiui, i=1,2,3,...

∀u ∈ L2(M), u =
∑∞
i=1 aiui, ai = 〈u, ui〉, 〈ui, uj〉 = δij , 〈u, u〉 =

∑∞
i=1 a

2
i

So
E(u) = 〈5u,5u〉

=

〈
5
∞∑
i=1

aiui,5
∞∑
i=1

aiui

〉

=

∞∑
i,j=1

aiaj = 〈5ui,5uj〉

=

∞∑
i,j=1

aiaj = 〈5 ∗ 5ui, uj〉

=

∞∑
i,j=1

aiaj = 〈∆ui, uj〉

=

∞∑
i,j=1

aiaj = 〈λiui, uj〉

=

∞∑
i,j=1

aiajλiδij

=

∞∑
i=1

a2
iλi ≥

∞∑
i=1

a2
iλ1(sinceλi ≤ λ2 ≤ λ3 ≤ ...)

= λ1

∞∑
i=1

a2
i

= λ1 〈u, u〉

So 〈5u,5u〉 ≥ λ1 〈u, u〉

So 〈5u,5u〉〈u,u〉 ≥ λ1

So E(u)
〈u,u〉 ≥ λ1
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But
E (u1)

〈u1, u1〉
=
〈5u1,5u1〉
〈u1, u1〉

=
〈∆u1, u1〉
〈u1, u1〉

=
λ1 〈u1, u1〉
〈u1, u1〉

= λ1

Corollary 3.1. If M1 ⊂M2, then

λ1(M2) 6 λ1(M1),

i.e. the bigger the domain, the smaller the first eigenvalue.

Proof.
λ1(M1) = min {E(u), u ∈ C∞(M1)}

But then, u ∈ C∞(M2), u = 0 on M2, and

λ1(M2) = min {E(u), u ∈ C∞(M2)}

5. Here are a couple of examples:

Example 1) Let M1 = [0, a] ⊂ [0, b] = M2, anda < b. then

λ1(M1) = (
π

a
)2 > (

π

b
)2 = λ1(M2).

Example 2) The minimun of
∫ 1

0
u′2(x)dx, among all u, with

∫ 1

0
u2dx = 1

is π2.

Proof. By Minimum Energy Principle,

E(u) =

∫ 1

0

u′2(x)dx > λ1[0, 1] = π2

Question: Prove this directly (use Fourier series) with u1(x) = 1√
π sin(πx).

Lemma 3.1. In general

λk = min{E(u) : u⊥u1, . . . , u⊥uk−1} for k ≥ 2

and 〈u, u〉 = 1.



3 Eigenvalue Inequalities 23

Proof. For all u such that u⊥ui, i = 1, . . . , k − 1 we can write

u =

∞∑
n=k

anun.

And we know that E(u) ≤ λk 〈u, u〉, because λk ≤ λk+1 ≤ . . . . Notice
that E(uk) = λk.

3.2 Max-Min Principle

Theorem 3.1 (Max-Min Principle).

λk = max
dimV=k−1

{
min

u∈V ⊥,u6=0

E(u)

〈u, u〉

}
.

Corollary 3.2 (Corollary of Max-Min Principle). If M1 ⊂ M2 then
λk(M2) ≥ λk(M1) for all k = 1, 2, . . . .

Proof. Use Max-Min Principle to reduce it to the fact that if A ⊂ B ⊂ R
then inf B ≤ inf A. Notice that L2(M1) ⊂ L2(M2).

Let V ⊂ L2(M1) and dim V = k − 1. And let u ∈ L2(M1). If u⊥V in
L2(M1) then same is true in L2(M2). Since inner product for u, v ∈ L2(M1)
has a property ∫

M1

〈u, v〉 =

∫
M2

〈u, v〉 .

3.3 Proof of Weyl’s Law

Here we reproduce, with some details, Kac’s heat equation proof of Weyl’s Law.
His crucial heat kernel estimates can be understood and justified using Wiener
measure and Brownian motion.

1. The estimate KM1
(t, x, y) ≤ KM2

(t, x, y) if M1 ⊂ M2. Now, what is
K(t, x, y)? It is the amount of diffused stuff(heat,...) at y at time t > 0,
knowing that at t = 0,

K(0, x, y) =

{
1; if y = x

0; if y 6= x
(1)

and knowing that on ∂M , temperature = 0. (i.e.K(t, x, y) = 0 if y ∈ ∂M)

2. If M1 ⊂ M2 ⊂ Rn, then KM1
(t, x, y) ≤ KM2

(t, x, y) ≤ K0(t, x, y), where

x, y ∈M1∩M2,K0(t, x, y) is the Heat Kernel for RnK0(t, x, y) = (4πt)
−n
2 e

−(x−y)2
4t
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3. Understand the result by Brownie Motion

KM1
(t, x, y) =

∫
pathsx 7→yinM1

?,

KM2
(t, x, y) =

∫
pathsx 7→yinM2

?.

If M1 ⊂M2, there are more paths x 7→ y in M2 than M1.

Let M ⊂ R2 be a bounded domain with piecewise smooth boundary. Note
that same proof works in n− dim. We know that heat kernel is

K(t, x, y) =

∞∑
n=1

e−tλnun(x)un(y).

First step is a principle of non feeling the boundary at short time. So approxi-
mation

K(t, x, y) ∼ 1

4πt
e−

(x−y)2
4t , 0 < t� 1.

Now let x = y. Hence K(t, x, x) = 1
4πt . We integrating this over M and get∫

M

K(t, x, x)dx ∼
∫
M

dx

4πt
=
Area(M)

4πt
.

LHS =

∞∑
n=1

e−tλn
∫
M

u2(x)dx =

∞∑
n=1

e−tλn .

So we get a very useful expression

∞∑
n=1

e−tλn ∼ Area(M)

4πt
. (2)

Apply Tauberian theorem for 2 and get

N(λ) ∼ Area(M)

4π
λ,

where N(λ) = ]{λi ≤ λ}.
Recall that trace of matrix A is

Tr(A) =

∞∑
i=1

aii.

And we have a trace formula

Tr(A) =

∞∑
i=1

λi
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where λi is an eigenvalue of matrix A.
Let A : H → H be a operator (and dim H = ∞). We know that in some

basis

A =

λ1 0 . . . 0
0 λ2 . . . 0

0 0
. . .

 .

Apply trace formula to the operator A = e−t∆. We get

Tr(A) = Tr
(
e−t∆

)
=

∞∑
n=1

e−tλn .

3.4 More Precise Argument

1. Now we need to estimate:

For Q ⊂M ,

KQ(t, x, y) 6 KM (t, x, y) 6 KR2(t, x, y) = (4πt)−1e−
(x−y)2

4t

We know that if Q = square with side length a, then{
4
a2

∑
m,nodd e

− (m2+n2)π2

4a2
t ∼ 1

4πt
(3)

LHS =

∞∑
n,m

e−tµm,n

where µm,n are the eigenvalues of square Q.{
λm,n = π2(m

2

a2 + n2

a2 ),m, n > 1

µm,n = sin(πmax )sin(πnay )
(4)

⇒ K(t, (x, y), (x′, y′)) =
∑

e−tµm,numn(x, y)umn(x′, y′)

Hence,

LHS =
∑

e−tµm,numn(x)umn(x)

But K0(t, x, x) = 1
4πt .

2. Why does formula (2) hold?

Proof. Use Poisson Summation Formula (PSF).

∀f : R→ R (rapidly increasing at ∞),

∞∑
n=−∞

f(n) =

∞∑
n=−∞

f̂(n)
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where Fourier transform f̂(y) =
∫∞
−∞ e−2πixyf(x)dx

3. e.g: f(x) = e−ax
2

, a > 0, f̂(y) =?

f̂(y) =

∫ ∞
−∞

e−2πixye−ax
2

dx

=

∫ ∞
−∞

e−2πixy−ax2

dx

=

∫ ∞
−∞

e−a(x2− 2πi
a xy)dx

=

∫ ∞
−∞

e−a((x−πia y)2+π2

a2
y2)dx

=

∫ ∞
−∞

e−a((x−πia y)2+π2

a2
y2)dx

=

∫ ∞
−∞

e−a(x−πia y)2e−
π2

a y
2

dx

= e−
π2

a y
2

∫ ∞
−∞

e−a(x−πia y)2dx

= e−
π2

a y
2

∫ ∞
−∞

e−ax
2

dx

=

√
π

a
e−

π2

a y
2

, because

∫ ∞
−∞

e−ax
2

dx =

√
π

a

4. Now apply PSF to f(x) = e−πx
2t, a = πt, t > 0,

⇒
∞∑

n=−∞
e−πn

2t =
1√
t

∑
e−

πn2

t

This is Jacobi’s Inversion Formula.

For Theta Function:

Θ(t) =

∞∑
n=−∞

e−πn
2t, t > 0

Θ(t) =
1√
t
Θ(

1

t
)

From Jacobi’s Inversion Formula, we can see

Θ(t) ∼ 1√
t
, t→ 0
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Fig. 3: Theta-function

so,

lim
t→0

Θ(t)
1√
t

= 1

5. e.g. For Θ(t) =
∑
m,n∈Z e

−π(n2+m2)t, then Θ(t) ∼ ( ?√
t ), t→ 0.

Therefore, Jacobi’s Inversion Formula:

Θ(t) ∼ c

t
, t→ 0

6. Question: How many terms need to add the series

Θ(t) =
∑
n=Z

e−πn
2t

in order to find Θ( 1
10 ) in a 2-decimal digits? Note: Jacobi noticed that

when using Θ(t) = 1√
t
Θ( 1

t ), if adding 2 terms on RHS, you get Θ(t) in

500 digits.

3.5 The Poisson Summation Formula

The Poisson Summation Formula (PSF) is a trace formula and is a feature
of Fourier theory and harmonic analysis on abelian groups.
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The prototypical trace formula is a well known linear algebra fact. All
trace formulae, including the PSF, can be regarded as a generalization
(typically to infinite dimensional spaces where some analysis is required)
of the following fact: for any n by n matrix A we have

n∑
i=1

aii =

n∑
i=1

λi

The two sides are of very different nature. The LHS is related to geometry,
while the RHS is spectral.

(a) Let f ∈ S(R) be a Schwartz class function. In fact, it suffices to
assume that f ′′ is continuous and |f |, |f ′|, |f ′′| are bounded by (1 +
x2)−1. The Poisson summation formula states that∑

n∈Z
f(n) =

∑
n∈Z

f̂(n),

where f̂ is the Fourier transform of f defined by

f̂(p) =

∫
R
e−2πipxf(x)dx.

We shall give two proof of this. Here is our first proof:

Proof. Let

g(x) =
∑
n∈Z

f(x+ n)

This is a periodic function and by Fourier inversion formula for pe-
riodic functions we know that

g(x) =
∑
n∈Z

ĝne
2πinx

and hence
g(0) =

∑
n∈Z

ĝn

But the Fourier coefficient

ĝn =

∫ 1

0

g(x)e−2πinxdx

can be computed as∫ 1

0

g(x)e−2πinxdx =

∫ 1

0

∑
n∈Z

f(x+n)e−2πinxdx =
∑
n∈Z

∫ 1

0

f(x+n)e−2πinxdx

=
∑
m∈Z

∫ m+1

m

f(y)e−2πin(y−m)dx =

∫
R
e−2πinyf(y)dy = f̂(n)
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(b) (PSF as a trace formula). And here is a better proof of PSF that
makes it evident that it is a trace formula. A key idea here is that

Characters are eigenfunctions of convolution operators

Proof. The function f defines a convolution operator

T : L2(R/Z)→ L2(R/Z), T (g) = f ∗ g

f ∗ g(x) =

∫ ∞
−∞

f(x− y)g(y)dy

One checks that f ∗ g is a periodic smooth function, hence T is well
defined. Now we claim that the operator T is an integral operator
with a kernel k(x, y) defined by

k(x, y) =
∑
n∈Z

f(x− y + n)

Suffices to check that

(Tg)(x) =

∫ 1

0

k(x, y)g(y)dy, ∀g ∈ L2(R/Z)

To see this, we compute the RHS∫ 1

0

k(x, y)g(y)dy =

∫ 1

0

∑
n∈Z

f(x−y+n)g(y)dy =
∑
n∈Z

∫ n+1

n

f(x−y)g(y)dy

=

∫ ∞
−∞

f(x− y)g(y)dy = f ∗ g(x)

On the other hand we can show that this compact operator T is
diagonalizable in the orthonormal basis

en = e2πix, n ∈ Z

In fact we have

T (en) = f ∗ en ==

∫ ∞
−∞

f(x− y)e2πinydy =

(This is incomplete)

(c) If instead of Z we work over the lattice LZ, the the right hand side
will turn into a sum over the dual lattice L∗ = L−1Z and we get∑

x∈L
f(x) =

1

L

∑
y∈L∗

f̂(y)
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The Fourier transform of the Gaussian f(x) = e−πx
2

, is equal to
itself

f̂(p) = e−πp
2

.

Using this and applying the PSF to the lattice
√
tZ, we obtain

Jacobi’s inversion formula for theta series∑
n∈Z

e−πn
2t =

1√
t

∑
n∈Z

e−πn
2/t.

Or,

θ(t) =
1√
t
θ(

1

t
).

In particular we get the remarkable asymptotic expansion for θ-
series near 0: ∑

n∈Z
e−πn

2t ∼ 1√
t

(t→ 0)

Notice that for t small the left hand side is a slowly convergent
series, while the right hand side gives a very good value for this
series. For example, for t = 0.01 we need 21 terms of the LHS
to compute it with one significant digit, while the right hand
side gives its value to 130 digits! (we have to check this with
Mathematica!)

The Fourier transform of (t/π)(x2 + t2)−1 is e−2π|γ|t, so

∑
n∈Z

(n2 + t2)−1 =
π

t

∑
n∈Z

e−2π|n|t =
π

t

1 + e−2πt

1− e−2πt

If we let t→ 0, we get ∑
n≥1

1

n2
=
π2

6

3.6 In Rn

Let Γ ⊂ Rd be a lattice and let Γ∗ denote its dual lattice defined

Γ∗ = {x ∈ Rd : 〈x, y〉 ∈ Z ∀y ∈ Γ}

Let f ∈ S(Rn) be a Schwartz class function. The Poisson summation
formula states that ∑

γ∈Γ

f(γ) =
1

Covol (Γ)

∑
γ∗∈Γ∗

f̂(γ∗),
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(Example of Jacobi Inversion Formula for θ-series)

Let Γ ⊂ Rn be a lattice. Its theta series is defined as

θΓ(t) =
∑
x∈Γ

e−πtx
2

, t > 0.

f(x) = e−πx
2

, x ∈ Rn

denote the Gaussian. It is well known that its Fourier transform is
given by

f̂(x) = e−πx
2

, x ∈ Rn.

Let us apply the PSF to the lattice

Γt =
√
tΓ, t > 0

We obtain the Jacobi Inversion Formula Theta Series∑
x∈Γ

e−πtx
2

=
1

Covol (Γ)

∑
y∈Γ∗

e−
πx2

t , t > 0

3.7 A Tauberian Theorem

To derive the Weyl’s Law from the asymptotic expansion of the heat trace we
need a Tauberian theorem. Given a sequence of non-negative numbers

λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞

Assume the Dirichlet series

f(t) =
∑

e−tλi

is convergent for all t > 0. The eigenvalue counting function:

N(λ) = #{λi ≤ λ}

can be related to the asymptotic behaviour of f(t) near 0, thanks to Karamata’s
Tauberian

Theorem 3.2. Let dµ(λ) be a positive measure on R+ such that the integral

f(t) =

∫ ∞
0

e−tλdµ(λ)

converges for t > 0, and such that

lim
t→0

tαf(t)
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4 Heat Trace

4.1 (Asymptotic) Heat Kernel Expansion Theorem

Let M be a closed space, with no boundary, then we have an expansion of the
form

K(t, x, y) ∼ (4πt)−
n
2 (a0(x) + a1(x)t+ a2(x)t2 + ...)

as t→ 0.
Additionally we have that

a0(x) = 1

a1(x) =
1

6
s(x)

where s(x) is the scalar curvature of M and

s(x) = 2K(x)

Here, K(x) denotes Gaussian curvature and is a measure of intrinsic bending of
our space or surface at x.
In the case where our surface has a boundary, we get the following expansion,

K(t, x, y) ∼ (4πt)−
n
2 (b0(x) + b1(x)t1/2 + b2(x)t+ ...)

as t→ 0.

4.2 Trace of the Heat Operator

Z(t) := tr(e−t∆) =

∞∑
n=1

e−λnt

Z(t) = tr(e−t∆) =
∫
M
K(t, x, x)dx

∼ (4πt)−n/2(a0(x) + a1(x)t+ a2(x)t2 + ...)
In the case with no boundary, and

∼ (4πt)−n/2(b0(x) + b1(x)t1/2 + b2(x)t+ ...)
in the case with a boundary.

Consider Z(t) =
∑∞
n=1 e

−λnt is a trace of the heat operator. Our goal is to find
short-time expansion of Z(t) in four examples: circle, violin string, flat torus
and rectangular.

1. Consider a circle with length 2π (i.e. S1). In this case the trace of the
heat operator is

Z(t) =

∞∑
n=1

e−n
2t.
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Find an asymptotic expansion of Z(t). Recall that theta-function is θ(t) =
∞∑

n=−∞
e−πn

2t. And from Poisson summation formula we can get

θ(t) =
1√
t
θ

(
1

t

)
.

This formula implies that

θ(t) ∼ 1√
t

as t→ 0

Hence

Z(t) =

∞∑
n=−∞

e−n
2t = θ

(
t

π

)
.

Since

lim
t→0

θ
(
t
π

)
1√
t
π

= 1.

We can get that Z(t) ∼ 1√
t

√
π. So Z(t) = 1√

4πt
2π. But from heat kernel

expansion theorem
∫
M
a0 = V ol(M) = 2π.

2. Let consider a string with a length 2π. We know that eigenvalues are

λn = n2

4 , n = 1, 2, . . . . Notice that these are simple eigenvalues. So

Z(t) =

∞∑
n=1

e
−n2t

4 =
θ( t

4π )− 1

2
=
Z̃( t4 )− 1

2

where Z̃(t) = θ
(
t
π

)
. Analogously, Z̃( t4 ) ∼ 2

√
π√
t
. Using this expansion we

can get

Z(t) ∼
√
π√
t
− 1

2
= (4πt)−

1
2

(
2π −

√
πt

1
2 + . . .

)
.

From kernel expansion theorem it is easy to see that
∫
M
a0 = 2π since

length of a string is equal to 2π.

3. We now consider a rectangular domain, M , with length a and width b.
From a previous calculation we found that

spec(∆) = π2(
m2

a2
+
n2

b2
),m, n = 1, 2, ...

with corresponding eigenfunctions

um,n = sin(
mπ

a
x)sin(

nπ

b
x)

Therefore,
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Z(t) =

∞∑
m,n=1

e−π
2(m

2

a2
+n2

b2
)t

=

∞∑
m,n=1

e−π
2(m

2

a2
)te−π

2(n
2

b2
)t

=

∞∑
m=1

e−π
2(m

2

a2
)t
∞∑
n=1

e−π
2(n

2

b2
)t

Now, using the fact that Θ(t) =
∑
n∈Z e

−πn2t = 1√
t
Θ( 1

t ) the above give,

=

(
Θ
(
πt
a2

)
− 1

2

)(
Θ
(
πt
b2

)
− 1

2

)

=
1

4

 1√
πt
a2

Θ

(
1
πt
a2

)
− 1

 1√
πt
b2

Θ

(
1
πt
b2

)
− 1


and if we use the fact that as t→ 0 Θ

(
1
πt
a2

)
→ 1 we see,

∼ 1

4

(
a√
πt
− 1

)(
b√
πt
− 1

)
, t→ 0

=
1

4

(
ab

πt
− a+ b√

πt
+ 1

)
, t→ 0

=
1

4πt

(
Area(M)−

√
π

(
1

2
Perimeter(M)

)√
t+ πt

)
, t→ 0

The above gives the first 3 terms in the expansion.

Corollary: One can hear the area and the perimeter of a rectangle.

Further, Kac (put citation here**) proves that we can hear the area and
perimeter for any bounded domain, M , with smooth boundary and r holes.

Z(t) ∼ A

4πt
− L

8
√
nt

+
1

6
(1− r), t→ 0

where A and L are the area and perimeter of M , respectively, and r is the
number of holes in M .

Question: Find the eigenvalues and eigenfunctions for concentric circles.

Proof. Let M be a domain {(x, y) : r2 ≤ x2 + y2 ≤ R2} or in polar
coordinates M = {(ρ, θ) : r ≤ ρ ≤ R, 0 ≤ θ < 2π}.
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We know that Laplacian in polar coordinates

∆ = −
(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
.

By analogy with circular we can get that solution of Bessel equation in
this case is

u(ρ) = C0J0(
√
λρ) + C1I0(

√
λρ),

where J, I are the Bessel function.

But solution satisfies boundary conditions

C0J0(
√
λR) + C1I0(

√
λR);C0J0(

√
λr) + C1I0(

√
λr).

This is a linear system of equation. It’s has nontrivial solution when
determinant of system is equal to 0. So∣∣∣∣J0(

√
λR) I0(

√
λR)

J0(
√
λr) I0(

√
λr)

∣∣∣∣ = 0.

Therefore we get equality

J0(
√
λR)I0(

√
λr) = J0(

√
λr)I0(

√
λR). (5)

This is the transcendental equation with infinite numbers of positive roots.
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Let νn, n = 0, 1, 2, . . . are these roots. Then
√
λ = νn, n = 0, 1, 2, . . . are

eigenvalues. So

un(ρ) = −I0(Rνn)J0(νnρ) + J0(Rνn)I0(νnρ)

is an eigenfunction with eigenvalue ν2
n, where νn the n-th positive root

of (5).

4. Now we consider the flat torus T2 = R/aZ × R/bZ. We see above that

eigenvalues in this case are λn,m = 4π2
(
m2

a2 + n2

b2

)
, m, n ∈ Z. Therefore,

Z(t) =
∞∑

m,n∈Z
e
−4π2

(
m2

a2
+n2

b2

)
t

=
∞∑
m∈Z

e−4π2m2

a2
t
∞∑
n∈Z

e−4π2 n2

b2
t = θ(

4π

a2
t)θ(

4π

b2
t)

=
a√
4πt

θ(
a2

4π

1

t
)

b√
4πt

θ(
b2

4π

1

t
) =

ab

4πt
∼ Area(M)

4πt
as t→ 0.

It means that terms a1 = a2 = . . . = 0 in heat kernel expansion for flat
torus. And we get that

a1 =

∫
T2

1

6
s(x)dx = 0,

where s(x) is scalar curvature.

5 Sphere S2

Our goal now to determine the eigenvalues, multiplicities, and eigenfunctions of
the Laplacian on the 2-d round sphere. Then generalize this results to spheres
in any dimension.

5.1 Spectrum of Spheres

1.
M = S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

Also, on S2, {
M u = λu

u 6= 0
(6)

Laplacian in R3,

M= −
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
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In spherical coordinates, we use (θ, φ, r), thus we have:
x = rsinφcosθ

y = rsinφsinθ

z = rcosφ

(7)

The corresponding Laplacian is

− M=
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
MS2

with

MS2=
1

sinθ

∂

∂θ
sinθ

∂

∂θ
+

1

sinθ2

∂2

∂φ2

2. Use the symmetry of the problem:

G = group of rotation of R3

∀g ∈ G,∀f ∈ C∞(S2),
(gf)(x) = f(g−1x)

G acts on functions, and M acts on functions, also these two actions com-
mute.

g M=M g,∀g ∈ G

i.e.
g(M f) =M (gf)

3. Let P k = homogeneous polynomials of degree k in x, y, z, k = 0, 1, 2, ...,
then

P 0 = {1}
P 1 = {x, y, z}
P 3 = {x2, y2, z2, xy, xz, yz}
P 4 = {x3, y3, z3, x2y, ...}
...

g(P k) ⊂ P k, e.g. gP 2 ⊂ P 2, and g is a 3× 3 matrix. Then

g(f) = g(x2) =?

g(f)(x) = f(g−1x)

= get a polynomial of order 2 again

f(x, y, z) ∈ P k, f(x, y, z) =

k∑
i=0

fi(x, y)zk−i,
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and fi(x, y) is a homogeneous polynomial of degree i.

We then know,

dim{fi; degfi = i} = dim{xmyn|m+ n = i} = i+ 1

⇒ dimP k =

k∑
i=0

(i+ 1)

= 1 + 2 + 3 + · · ·+ (k + 1)

=
(k + 1)(k + 2)

2

e.g. dimP 3 = 10

4. Back to M: P k → P k−2,

−(∂2
x + ∂2

y + ∂2
z )f(x, y, z) ∈ P k−2

Spherical Harmonics of Degree k:

Hk = Ker M

= {f ∈ P k| M f = 0}

Here are some examples:

H0 = P 0 = {1}
H1 = P 1 = {x, y, z}
H2 = {ax2 + by2 + cz2 + dxy + exz + fyz|a+ b+ c = 0}

5. e.g. Why M: P 4 → P 2 is surjective?

e.g. Why ∃f ∈ P 4, s.t. M (f) = x2?

Consider the example f = − 1
3×4x

4. And same with y2, z2.

M (f) = xy → f = −1

6
x3y

Corollary 5.1. (rank + nullity Theorem)

dimKer M= dimP k − dimP k−2

6. From Linear Algebra:
T : V →W

rank(T ) + null(T ) = dim(V )

dimim(T ) + dimKer(T ) = dim(V )
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So,

dimHk =
(k + 1)(k + 2)

2
− (k − 1)k

2
= 2k + 1

⇒ dimHk = 2k + 1

f ∈ Hk,M f = 0

7. Claim:
∀f ∈ Hk,∆S2f = k(k + 1)f

(i.e. Hk is an eigenspace of ∆S2 with eigenvalue k(k + 1))

Proof. Recall :

−∆R3 =
∂2

∂r2
+

2

r

∂

∂r
− 1

r2
∆S2

and we call this **.

∀f ∈ Hk is homogeneous of degree k, f = rkf̃ , where f̃ is a function on
S2.

For example,

H2 =
{
x2 + by2 + cz2 + dxy + exz + fyz|a+ b+ c = 0

}
k = 2, r =

√
x2 + y2 + z2,

so we have r2 = x2 + y2 + z2, and then

F =
(
x2 + y2 + z2

)(ax2

r2
+
by2

r2
+
cz2

r2
+ ...

)
Let

F̃ =
ax2

r2
+
by2

r2
+
cz2

r2
+ ...,

we have
F = r2F̃ .

Note that F̃ is a function of θ and φ only.

Now,
∀f ∈ Hk ⊂ P k,∆f = 0

If we write f = rkf̃ (φ, θ), and we use ** to compute ∆f ,

then we get

−∆f =
∂2

∂r2

(
rkf̃ (φ, θ)

)
+

2

r

∂

∂r

(
rkf̃ (φ, θ)

)
+

1

r2
∆S2

(
rkf̃ (φ, θ)

)
⇒ 0 = k(k − 1)rk−2f̃ (φ, θ) +

2

r
krk−1f̃ (φ, θ)− rk

r2
∆S2 f̃ (φ, θ)

= (k(k − 1) + 2k −∆S2) f̃ (φ, θ)
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then we have
∆S2 f̃ (φ, θ) = k(k + 1)f̃ (φ, θ)

i.e. ∀f ∈ Hk(spherical harmonic of degree k), by restricting f |S2 =
f̃ (φ, θ), we can get an eigenfunction, with eigenvalues k(k + 1), n =
0, 1, 2, 3, ..., and these are non-simple eigenvalues with multiplicity 2k+ 1.

Eigenvalues grow quadratically with multiplicities. Acutally, theses are
the only eigenvalues.

8. Checking Weyl’s Law for S2

Let # {λi ≤ λ} = N(λ)

N(λ) ∼ wnV ol(M)

(2π)n
λ
n
2 , as t→∞

where wn is the volume of the unit ball in Rn.

When n = 2, M = S2, w2 = π, we have

N(λ) ∼ π4π

4 pi2
λ = λ.

Check for S2 that N(λ) ∼ λ as λ→∞:

λ = # {λi ≤ λ}
λi ≤ λ

k(k + 1) ≤ λ
k2 + k ≤ λ

k2 ≤ λ

k ≤
√
λ

But how many eigenvalues within k?

N(λ) ∼ 1 + 3 + 5 + ...+ (2k + 1)

= (k + 1)2

= k2 + 2k + 1

= λ+ 2
√

(λ) + 1

So we have

lim
λ→∞

N(λ)

λ
= 1.

9. Problem: Find eigenvalues and multiplicities of ∆(Laplacian) on

Sn =

{
(x1, ..., xn, xn+1) |

n+1∑
i=1

x2
i = 1

}
.
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Idea:

P k is homogeneous polynomials of degree k in x1, ..., xn+1.

Hk ⊂ P k, Hk = Ker∆Rn=1

Compute dimP k, dimHk(using ∆ : P k → P k−2 is surjective)

Write f ∈ Hk as f = rkf̃ , and check that

∆Rn+1f = 0⇒ ∆Sn f̃ = λf̃ .

(using expression of ∆Rn+1 in spherical coordinates in Rn+1: (r, φ1, φ2, ..., φn))

and check Weyl’s Law.

Theorem 5.1. P k 7→ P k−2 by ∆ is a surjection.

Proof. Clearly ∆ is a linear map. Now we want to prove surjectivity of ∆.

We prove the n-th dimension case. xa11 xa22 ...xann ∈ P k−2 where

a1+a2+..+an = k−2. We tentative guess the answer to be xa1+2
1 xa22 ...xann .

But ∆(xa1+2
1 xa22 ...xann ) = (a1 + 2) ∗ (a1 + 1)xa11 xa22 ...xann +a2 ∗ (a2 − 1)xa11 xa2−2

2 ...xann +
..+ an ∗ (an − 1)xa11 xa22 ...xan−2

n

By the linearity of ∆, if we can find the preimage of an ∗ (an − 1)xa11 xa22 ...xan−2
n ,

we’re done. This case can easily be achieved by induction on the mini-
mum of {a1, a2, ...an},where we increase a1 by 2 every time but decrease
all other terms to the power of 1 or 0.

The base case is xa1x2...xm (Not all terms are required to be present). The
preimage of this is 1

(a+2)(a+1)x
a+2
1 x2...xm.

Find the dimension of Hk the kernel of pk 7→ pk−2 by ∆ with the space
dimension m.

Proof. We know ∆ is surjective. Hence it’s reduced to finding the dimen-
sion of pk where pk is the homogeneous polynomial of kth degree with
variable x1, x2, ...xk.

This is a classical combinatorics question of choosing some number of balls
of a few red, blue, green balls. This is solved by using generating functions.
For example, if you have 3 red balls, 5 blue balls and 6 green balls, what’s
combination of choosing 4 balls? If you expand (1 + x + ..x3)(1 + x +
..x5)(1+x+ ..x6), what’s the coefficient of x4? You can choose x from the
first bracket and x3 from the second, or choose x2 from the first, 1 from
the second, and x2 from the third. You can easily say the two questions
are equivalent.

Similarly, to find the dimension of pk we can expand (1+x+x2 +. . .+xk+
. . .)m and find the coefficient of xk. We can use Taylor’s series. It is easy
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to see that (1 +x+x2 + . . .+xk + . . .)m = 1
(1−x)m . Let f(x) = (1−x)−m.

Find Taylor’s expansion for the function f(x)

f(x) = f(0) + f ′(0)x+ . . .+
f (k)(0)

k!
xk + . . . .

So k − th coefficient of f(x) is equal to f(k)(0)
k! . Compute this coefficent

f (k)(0)

k!
=
m(m+ 1) · . . . · (m+ k − 1)

k!
=

(m+ k − 1)!

k!(m− 1)!
.

But this is exactly
(
m+k−1

k

)
. Therefore dimension of P k is

(
m+k−1

k

)
.

Hence the dimension of Hk is

dim Hk = dim P k − dim P k−2 =
(m+ k − 1)!

k!(m− 1)!
− (m+ k − 3)!

(k − 2)!(m− 1)!
=

(m2 + 2mk − 2k − 3m+ 2)
(m+ k − 3)!

k!(m− 1)!
.

Now we can write f = rkf̃(θ1, . . . , θn−1) where f̃ is a function on Sn. The
Laplacian in spherical coordinates r, θ1, . . . , θn−1 in n dimensions is

∆Rn+1 =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn .

On the one hand ∆Rn+1f = 0. Then

0 = k(k − 1)rk−2f̃ + k(n− 1)rk−2f̃ + rk−2∆Sn f̃ .

Hence
∆Sn f̃ = k(k + n− 2)f̃

for any f ∈ Hk by restricting f |Sn = f̃ . So we get eigenvalues λk =

k(k+n−2), k = 0, 1, . . . with multiplicity (n2+2nk−2k−3n+2) (n+k−3)!
k!(n−1)! .

10. Imagine we have 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ ...→∞
(1) How fast does λk grow?

Eg.

lim
k→∞

λk√
k

= c

(2)N(λ) = # {λi ≤ λ}, this is the eigenvalue counting function.

(2)⇒ (1)

Weyl’s Law gave us answer to (2) for {λi} = spec(∆)
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N(λ) ∼ wnV ol(M)

(2π)n
λ
n
2

N(λ) ∼ cλn2 as λ→∞,

where c = wnV ol(M)
(2π)n .

What about (1)? What is the rate of the growth of λi’s as i→∞
Answer:

λk ∼ c−
2
n k

2
n as k →∞.

Proof. Let λ = λk
N(λk) = k = cλ

n
2

k

λk ∼ c−
2
n k

2
n as k →∞

Conversely, (2)⇒ (1)

λk ∼ c−
2
n k

2
n , as k →∞

N(λ) = # {λk ≤ λ}

= #
{
k|c− 2

n k
2
n ≤ λ

}
∼ cλn2 , as λ→∞

11. Question: According to Prime Number Theorem,

# {P ≤ x} ∼ x

log x
.

Let Pk be the k − th prime, find the rate of Pk in k.

Proof. We choose x = Pk, then # {Pi ≤ Pk} = k. Therefore

k ∼ Pk
logPk

.

The rate of Pk is

Pk ∼ −kLambertW
(
−1

k

)
,

where the LambertW function satisfies x = LambertW (x)eLambertW (x).
So

Pk ∼ e−Lambert(−
1
k ).

We can conclude that prime numbers have exponential growth.
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6 ζ-function

Our goals: 1) define spectral zeta-function; 2) give the relation between zeta-
function and the heat trace.

6.1 Asymptotic Behaviour of Eigenvalues

dim(M) = 0⇒ λk ∼ ek, k →∞
.
.
.

dim(M) = 1
4 ⇒ λk ∼ ck8, k →∞

dim(M) = 1
2 ⇒ λk ∼ ck4, k →∞

dim(M) = 1⇒ λk ∼ ck2, k →∞
dim(M) = 2⇒ λk ∼ ck, k →∞
dim(M) = 3⇒ λk ∼ ck

2
3 , k →∞

dim(M) = 4⇒ λk ∼ c
√
k, k →∞

.

.

.
dim(M) =∞⇒ λk ∼ c log k, k →∞ (For RZ, we don’t know if this is correct)

That is, dim(M) = 2⇒ λk ∼ ck
2
n , k →∞. Therefore the dimension of M and

the volume of M are related to the spectrum of ∆ on M .
Question: What happens to Weyl’s Law in the zero-dimensional case?

6.2 Spectral ζ-function

We know that spectrum of Laplacian is spec(∆) = {0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ . . .}.
Define the spectral ζ-function

ζ(s) =
1

λs1
+

1

λs2
+ . . . =

∞∑
i=1

1

λsi
.

Recall that λk ∼ Ck
2
n and dim M = n. It is easy to see that from this ζ(s) is

convergent for s > n
2 .

In fact, ζ(s) has analytical continuation to C\{n2−j}, i.e. ζ(s) : C\{n2−j} →
C where j = 0, 1, . . . . As ζ(s) for all s such that Re s > n

2 then ζ(s) is original
Riemann ζ-function.

E.g. let’s consider domainM = S1.We know that spec(∆) = {n2 with multiplicity 2,
0 simple eigenvalue }. Therefore,

ζ(s) =

∞∑
n=−∞

1

(n2)
s =

∞∑
n=1

2

(n2)
s = 2

∞∑
n=1

1

n2s
= 2ζR(2s)

where ζR(s) = 1
1s + 1

2s + 1
3s + . . . is Riemann ζ-function. And it has analytical

continuation for whole space C \ {1}.
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s = n
2

Re s > n
2

6.3 Gamma Function

For any s ∈ C with Re(s) > 0 we define,

Γ(s) =

∫ ∞
0

e−t
ts

t
dt

In fact, if s ∈ Z+, Γ(s) = (s−1)!. We can see this by noticing that Γ(s+1) =
sΓ(s).

Γ(s+ 1) =

∫ ∞
0

e−t
ts+1

t
dt

=

∫ ∞
0

e−ttsdt

Now using integration by parts we get

Γ(s+ 1) = ts(−e−t)
∣∣∣∣∞
0

−
∫ ∞

0

−e−tsts−1dt

= s

∫ ∞
0

e−t
ts

t
dt

= sΓ(s).

We also know,

Γ(1) =

∫ ∞
0

e−tdt = 1.

Which gives us,

Γ(2) = 1 · Γ(1) = 1! = (2− 1)!

Γ(3) = 2 · Γ(2) = 2 · 1 = (3− 1)!

Γ(4) = 3 · Γ(3) = 3 · 2 = (4− 1)!
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.

.

.

Γ(n) = (n− 1)!, n ∈ Z+

6.4 Mellin Transform

λ−s =
1

Γ(s)

∫ ∞
0

e−tλ
ts

t
dt, Re(s) > 0

Proof. Want to show

Γ(s) = λs
∫ ∞

0

e−tλ
ts

t
dt∫ ∞

0

e−tλ
(tλ)s

t
dt =

∫ ∞
0

e−tλ
(tλ)s

λt
d(λt)

Now replace λt with t,

=

∫ ∞
0

e−t
(t)s

t
dt

=

∫ ∞
0

e−tλ
(tλ)s

t
dt

= Γ(s)

Finally, we can find the relation between ζ-function ζ(s) =
∑∞
i=1

1
λsi

and

heat trace Z(t) =
∑∞
i=1 e

−λit for t > 0. From the Mellin transform we know

that λ−si = 1
Γ(s)

∫∞
0
e−tλi t

s

t dt, i = 1, . . . . Then we get

∞∑
i=1

1

λsi
=

1

Γ(s)

∫ ∞
0

∞∑
i=1

e−tλi
ts

t
dt.

So the relation between ζ-function and heat trace is

ζ(s) =
1

Γ(s)

∫ ∞
0

Z(t)
ts

t
dt.

(
1− xm+1

1− x

)m
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7 Asymptotic Expansion of the Heat Trace

7.1 A Tauberian Theorem

Theorem 7.1. Let 0 6 λ1 6 λ2 6 · · · → ∞ be such that:

Z(t) =

∞∑
i=1

e−λit

is convergent ∀t > 0.
Then ∀α > 0, and a ∈ R, TFAE:
(i)Z(t) ∼ at−α, t→ 0,
(ii)N(λ) ∼ a

Γ(α+1)λ
α, λ→∞, where N(λ) = #{λi 6 λ}.

Note: To prove Weyl’s Law, we first need to prove (i) for Z(t) = Tr(e−tM),
then the Tuberian theorem.

In this case,
Z(t) ∼ (4πt)−1Area(M), t→ 0

α = 1, a =
Area(M)

4π

By Taubeiran Theorem,

N(λ) ∼ Area(M)

4π

1

Γ(2)
λ =

Area(M)

4π
λ, λ→∞.


Z(t) = Tr(e−tM) =

∑
i e
−λit

ζ(s) =
∑∞
i=1

1
λsi
,Re s > n

2

N(λ) = #{λi 6 λ}

Recall: Relation between Z(t) and ζ(s):

λ−si =
1

Γ(s)

∫ ∞
0

e−tλi
ts

t
dt

ζ(s) =

∞∑
i=1

1

λsi
=

1

Γ(s)

∫ ∞
0

∑
e−tλi

ts

t
dt =

1

Γ(s)

∫ ∞
0

Z(t)
ts

t
dt,Re s >

n

2

Assume dimM = 2, then

Z(t) ∼ (4πt)−1(a0 + a1t+ a2t
2 + · · · ), t→ 0

For space without boundry, λ0 = 0, then

Z(t) =

∞∑
i=1

e−λit + 1, λ0 = 0 < λ1 6 λ2 6 · · ·
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So,

ζ(s) =
1

Γ(s)

∫ ∞
0

(Z(t)− 1)
ts

t
dt

=
1

Γ(s)

{∫ 1

0

+

∫ ∞
1

}
(Z(t)− 1)

ts

t
dt

=
1

Γ(s)

∫ 1

0

(Z(t)− 1)
ts

t
dt+

1

Γ(s)

∫ ∞
1

(Z(t)− 1)
ts

t
dt

= I1 + I2.

Second integral approaches to 0 as t → ∞, because Z(t) − 1 has exponential
decay and ts−1 is a polynomial. So I2 is defined for ∀s ∈ C. Now consider the
first integral I1.

I1(s) =
1

Γ(s)

∫ 1

0

Z(t)
ts

t
dt− 1

Γ(s)

∫ 1

0

ts

t
dt.

Second integral we can compute and get∫ 1

0

ts

t
dt =

∫ 1

ε

ts

t
dt =

1

s
− εs

s
→ 1

s
as ε→ 0.

But we now that Γ(s) has a pole at s = 0, so 1
Γ(s) has a zero at s = 0. It means

that 1
Γ(s)

1
s is analytic in whole C. For the 1

Γ(s)

∫ 1

0
Z(t) t

s

t dt we can use heat trace

expansion as t→ 0. Assume that

1

Γ(s)

∫ 1

0

(4πt)−1 (a0 + a1t+ . . .)
ts

t
dt =

1

4πΓ(s)

(
a0

ts−1

s− 1

∣∣∣∣1
0

+ a1
ts

s

∣∣∣∣1
0

+ a2
ts+1

s+ 1

∣∣∣∣1
0

+ . . .

)
=

1

4πΓ(s)

(
a0

s− 1
+
a1

s
+

a2

s+ 1
+ . . .

)
. (8)

So 1
4πΓ(s)

a0
s−1 has a pole at s = 1 and Ress=1 = a0

4π . All other terms are analytic

in C.
So spectral ζ-function for dimM = 2 has just one pole at s = dimM

2 = 1 and

has analytic continuation to all C\{1}. Finally Res ζ(s)|s=1 = a0
4π = Area(M)

4π .
Now we try to understand why importance of ζ(0).

Claim 7.1. ζ(0) = a1
4π − 1 for n = 2, where a1 is the second term in the heat

trace expansion.

Proof. How we can see above ζ(s) = I1(s)+I2(s). And I2(s) is analytic function
for ∀s ∈ C, so I2(0) = 0. From (8) I1(0) = a1

4π − 1. Immediately ζ(0) = a1
4π − 1.

But we know that a1 =
∫
M
a1(x) dx = 1

6 (Total scalar curvature).

E.g. M = S2 (round sphere). In this case scalar curvature is equal to
2K = 2. So a1 = 4π

3 .
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7.2 Heat Kernel Expansion for S2

We computed the spectrum of the Laplacian for 2-dimensional sphere. Recall
that eigenvalues are equal k(k+1) with multiplicity 2k+1, k = 0, 1, . . . . Now we
want to compute all the terms of the expansion (4πt)−1

(
a0 + a1t+ a2t

2 + . . .
)
.

Let us form the heat trace

Z(t) =

∞∑
k=0

(2k + 1)e−(k2+k)t.

We can use Euler-Maclaurin summation formula

b∑
k=a

f(k) =

∫ b

a

f(x) dx+
f(b) + f(a)

2
+

m∑
k=2

Bk
k!

(f (k−1)(b)− f (k−1)(a)) +Rm,

where B0 = 1, B1 = − 1
2 , B2 = 1

6 , B2i+1 = 0, i = 1, 2, . . . are the Bernoulli num-

bers and Rm is a remainder term. In our case let f(k) = (2k + 1) e−(k2+k)t, a =
0, b =∞. So

Z(t) =

∞∫
0

(2x+1)e−(x2+x)t dx+
1

2
+

1

6

(
2e−(x2+x)t − t(2x+ 1)2e−(x2+x)t

)∣∣∣∞
0

+. . . .

At first compute the integral

∞∫
0

(2x+ 1)e−(x2+x)tdx = −1

t
e−(x2+x)t

∣∣∣∣∞
0

=
1

t
.

Therefore

Z(t) =
1

t
+

1

2
+

1

12
(−2 + t) + . . . =

1

4πt

(
4π +

4

3
πt+ . . .

)
.

But we know that a0 = Area(S2) = 4π and a1 = 1
3

∫
S2

K dx = 4π
3 , where K is

Gaussian curvature. In this way we can compute all terms in the expansion.

7.3 ζ ′(0) and Determinant

Let A is a finite operator such that

A =

λ1 . . . 0
. . .

0 . . . λn

 .

We know that determinant detA = λ1 · . . . · λn. But Laplacian is the infinite
operator. So how we can define determinant for the Laplacian? One mathod is
to use ζ-function. Notice that ζ-function is

ζ(s) =

∞∑
i=1

1

λsi
.
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As we just saw that ζ(s) is analytic at s = 0. Let us define det∆ = e−ζ
′(0). We

give the justification for this definition. Differentiate ζ(s) and get

ζ ′(s) = −
∞∑
i=1

log λi
1

λsi

for Re s > 1. Now we put s = 0

ζ ′(0) = −
∞∑
i=1

log λi = − log

∞∏
i=1

λi.

So det∆ = e−ζ
′(0).

E.g. for dimM = 2. We can get that

ζ(0) = −1 +
a1

4π
= −1 +

1

4π
(Total scalar curvature).

Now we have three important expressions for ζ-function

−ζ ′(0) = log det∆;

ζ(0) = −1 +
1

4π
(Total scalar curvature)

Res ζ(s)|s=1 =
Area(M)

4π
.

So ζ-function carries a lot of information about M. Same we can say about heat
trace Z(t).

The interesting question: what is ζ ′(0) for S2 and det∆S2?

8 Domain with Dimension Zero

8.1 Fractals

1. Example 1: Cantor Set (See Fig. 4)

2. Example 2: Diamond Fractals (See Fig. 5 and Fig. 6)

Figure 5 shows the first two iterations of the diamonds D4, 2, D6, 2 and
D6, 3. The further iteration of D4, 2 is shown in Figure 6.

3. Some fractal basic definitions

• Hausdorff-Besicovitch dimension dh:

dh refers to the spatial scaling properties of the fractal:

dh = lim
r→0

lnV (r)

ln r

where V (r) is the volume of the fractal at length scale r.
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Fig. 4: Construction of the triadic Cantor set. In each iteration, the middle
third of all the intervals is removed.

Fig. 5: The first 2 iterations for diamond fractals D4, 2, D6, 2, D6, 3

• Spectral dimension ds:

ds refers to the scaling properties of the eigenvalues of the Laplacian
defined on the fractal. A simple way to introduce it is through the
small t asymptotics of the heat trace:

ds = −2 lim
t→0

d
dt lnZ(t)
d
dt ln t

where Z(t) is the heat trace.

• Walk dimension dw:

dw is a ratio of dimensions and has the physical meaning of a diffusion
index:

dw =
2dh
ds

• For example, for the Sierpinski gasket shown in Fig. 7 dh = ln3
ln2 ,

ds = 2 ln3
ln5 and dw = ln5

ln2 .
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Fig. 6: Further iterations of the diamond fractal D4, 2

Fig. 7: Sierpinski gasket embedded in two dimensions. This fractal has Haus-
dorff dimension dh = ln3

ln2 , spectral dimension ds = 2 ln3
ln5 and walk dimen-

sion dw = ln5
ln2 .

4. Eigenvalues and Multiplicities for Laplacian of Diamond Fractals

The spectrum of a diamond fractal is the union of two sets of eigenvalues.
One set is composed of the non degenerate eigenvalues: π2k2, for k =
1, 2, 3, ...

The second set contains the degenerate eigenvalues (iterated eigenvalues):
λk = π2k2Ldwn obtained by rescaling dimensionless length Ln and time
Tn at each iteration n according to Ldwn = Tn. These iterated eigenvalues
have an exponentially large degeneracy, at each step, by BLdhn = B(ldh)n,
where B = ldh−1 − 1 is the branching factor of the fractal and ldh is the
number of links into which a given link is divided.

Note that we use the explicit scaling of the length Ln = ln upon iteration.

5. Heat Trace of Diamond Fractals

The heat trace for a diamond fractal is:

Z(t) =

∞∑
k=1

e−k
2π2t + (ldh−1 − 1)

∞∑
n=0

lndh
∞∑
k=1

e−k
2π2tln dω .
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Log periodic oscillations of the heat trace (See Fig. 8)

Z(t) ∼ c

tds/2

(
1 + α cos

(
2π

dω log l
log t+ ϕ

)
+ . . .

)
for some real constants c, αand ϕ. Recall that

dω =
2dh
ds

where ds is spectral dimension and dh is Hausdorff dimension.

Fig. 8: The log periodic oscillations, at small t, for the heat trace Z(t) on a
fractal, normalized relative to the leading term Zleading(t) = c/tds/2.
The solid curve is exact; the dashed curve is the first two terms in the
approximate expression.

6. ζ-function of Diamond fractals

The spectral ζ-function of the fractals is

ζD(s) =
ζR(2s)

π2s
ldh−1

(
1− l1−dωs

1− ldh−dωs

)
.

It has simple complex poles at

s =
ds
2

+ i
2πm

dω log l
, m ∈ Z

with a spectral dimension ds, a walk dimension dω, Hausdorff dimension
dh and a spatial-decimation factor l.(See Fig. 9)

8.2 Quantum Sphere S2
q

1. Relations for quantum sphere S2
q
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Fig. 9: Sketch of the complex pole structure of the zeta function for a fractal

A, B ∈Mn(C)

AB = q2BA

AB∗ = q−2B∗A

BB∗ = q−2A(1−A)

B∗B = A(1− q2A)

for some 0 < q < 1

2. A quantum sphere has non degenerate eigenvalues for Dirac operator
D such that D2 = ∆:

λk =
qk+1/2 − q−(k+1/2)

q − q−1

where

k =
1

2
,

3

2
,

5

2
, ...

Note: As q → 1, the above numbers approach to the spectrum of Dirac
operator D for the sphere S2

3. Heat Trace of a Quantum Sphere

The heat trace for quantum sphere is:

Z(t) =

∞∑
k=1

e
q−k−qk

q−q−1 t

However, we don’t know the heat trace expansion for quantum sphere.
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4. ζ-function of a Quantum Sphere

The spectral ζ-function of the quantum sphere is

ζq(s) = 4(1− q2)2
∞∑
k=0

Γ(s+ k)

k!Γ(s)

q2k

(1− qs+2k)
2

Note that Γ(s) is an extension of factorials to s ∈ C with Re(s) > 0 and

Γ(s) =

∫ ∞
0

e−t
ts

t
dt

All poles of ζq(s) are complex of the second order:

−2k + i
2π

log q
m

where k ∈ N and m ∈ Z.
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