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Background: Heat Equation

Laplacian in Rn: ∆ =−∑
n
i=1

∂ 2

∂x2
i
.

Let M ∈ Rn be a bounded domain with piecewise smooth boundary.
The heat equation

∂ϕ

∂ t =−∆ϕ

ϕ(x ,0) = ϕ0(x)

ϕ(x , t) = 0, ∀x ∈ ∂M, t ≥ 0.

is the evolution equation for distribution of temperature on M given
the initial (t = 0) distribution by ϕ0.

It has a formal solution given by

ϕ(x , t) = e−t∆
ϕ0, t > 0
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Background: Spectrum

An eigenvalue problem for a bounded domain M ⊂ Rn with piecewise
smooth boundary: {

∆u = λu

u|∂M = 0, u 6= 0.

Which gives us a discrete set of positive numbers

Spec(M) = {λ1,λ2, · · ·}

where

0 < λ1 ≤ λ2 ≤ ·· · → ∞
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Background: Weyl’s Law

For a bounded domain M with piecewise smooth boundary in Rn

N(λ )∼ ωnVol(M)

(2π)n
λ
n/2

λ → ∞

where ωn is the volume of the unit ball in Rn and

N(λ ) = #{λi ≤ λ}

is the eigenvalue counting function: total number of eigenvalues less than
or equal to a given λ .
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Background: Weyl’s Law Example

Example

Consider the case of M as a unit square in R2. We have

ω2 = π×12 = π

Vol(M) = 1×1 = 1

Then,

N(λ )∼ π

(2π)2
λ

and this gives us

N(λ )∼ 1

4π
λ , λ → ∞
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Background: Weyl’s Law

Figure: Weyl’s Law: One can hear the area of a drum.
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Background: Weyl’s Law

Note: By Weyl’s Law, one can only hear the area of a drum but not the
shape.

Figure: Isospectral but not isometric
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Background: Heat Kernel

Fundamental solution of the heat equation
∂K(t,x ,y)

∂ t =−∆K (t,x ,y)

K (t,x ,y) = 0, ∀x ,y ∈ ∂M, t ≥ 0.

limt→0K (t,x ,y) = δx(y) for all x,y ∈M,

Kernel of the integral operator e−t∆

e−t∆f (x) =
∫
M
K (t,x ,y)f (y)dy

In terms of eigenvalues and orthonormal eigenfunctions of ∆

K (t,x ,y) =
∞

∑
n=0

e−λntφn(x)φn(y).
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Background: (Asymptotic) Heat Kernel Expansion
Theorem

Theorem

Let M be a closed manifold with boundary, the expansion would be of the
form

K (t,x ,x)∼ (4πt)−
n
2 (b0(x) +b1(x)t

1
2 +b2(x)t + ...)

as t→ 0.

In this case, we only know that

b0(x) = 1
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Background: Jacobi’s Theta Function

The Θ-function is

Θ(t) =
+∞

∑
n=−∞

e−πn2t , t > 0.

Using Poisson’s summation formula we get the relation:

Θ(t) =
1√
t

Θ(
1

t
), t > 0.

We also note the useful property that:

Θ(t)∼ 1√
t
, t→ 0
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Background: (Asymptotic) Heat Kernel Expansion
Theorem

Theorem

Let M be a closed manifold, with no boundary, then we have an expansion
of the form

K (t,x ,x)∼ (4πt)−
n
2 (a0(x) +a1(x)t +a2(x)t2 + ...)

as t→ 0.

Additionally we have that
a0(x) = 1

a1(x) =
1

6
S(x)

where S(x) is the scalar curvature of M and S(x) = 2K (x) with K(x)
denoting the Gaussian curvature.
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Background: (Asymptotic) Heat Kernel Expansion
Theorem

Example

Gaussian curvature of a sphere with radius R

K (x) =
1

R2

Gaussian curvature of a flat plane

K (x) = 0

Gaussian curvature of a cylinder (two-dimensional)

K (x) = 0

A two-dimensional cylinder comes from a flat plane.
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Background: Cases to Consider

We focus on the no boundary cases, thus, we would use the heat kernel
expansion for domains with no boundary.

Sphere: S2 =
{

(x ,y ,z) ∈ R3 | x2 + y2 + z2 = 1
}

Fractals

Quantum Sphere
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Cases to Consider: Fractals Example: Cantor Set

Figure: Construction of the triadic Cantor set. In each iteration, the middle third
of all the intervals is removed.
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Cases to Consider: Fractals Example: Diamond fractals

Figure: The first 2 iterations for
diamond fractals D4,2, D6,2, D6,3

Figure: Further iterations of the
diamond fractal D4,2
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Cases to Consider: Fractals

Hausdorff-Besicovitch dimension dh:

dh = lim
r→0

lnV (r)

ln r

where V (r) is the volume of the fractal at length scale r .

Spectral dimension ds :

ds =−2 lim
t→0

d
dt lnZ (t)

d
dt ln t

where Z (t) is the heat trace.

Walk dimension dw :

dw =
2dh
ds
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Cases to Consider: Quantum Sphere S2
q - Noncommutative

Geometry

Geometry = Commutative Algebra

Example

Algebra Geometry
x2 + y2 = 1 circle

x2 + y2 + z2 = 1 sphere
f (x1, ...,xn) = 0 hypersurface

Quantum sphere is noncommutative geometry. It’s C ∗-algebra.
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Cases to Consider: Quantum Sphere S2
q

Relations for quantum sphere S2
q

A, B ∈Mn(C)

AB = q2BA

AB∗ = q−2B∗A

BB∗ = q−2A(1−A)

B∗B = A(1−q2A)

for some 0 < q < 1
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Eigenvalues and Multiplicities for Laplacian: Sphere S2

Eigenvalues and multiplicities for Laplacian are

λk = k(k + 1),

degk = 2k + 1

where k = 0,1,2,3, ....

Notice that eigenvalues grow quadratically with multiplicities growing
linearly.
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Eigenvalues and Multiplicities for Laplacian: Diamond
Fractals

Non degenerate eigenvalues: π2k2, for k = 1,2,3, ...

Degenerate eigenvalues (iterated eigenvalues):

λk = π
2k2Ldwn

obtained by rescaling dimensionless length Ln and time Tn at each
iteration n according to Ldwn = Tn. Multiplicities

degk = BLdhn = B(ldh)n

where B = ldh−1−1 is the branching factor of the fractal and ldh is the
number of links into which a given link is divided.

The eigenvalues and multiplicities grow exponentially.
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Eigenvalues and Multiplicities for Dirac operator D:
Quantum Sphere

Non degenerate eigenvalues for Dirac operator D such that D2 = ∆:

λk =
qk+1/2−q−(k+1/2)

q−q−1

where

k =
1

2
,

3

2
,

5

2
, ...

Note: As q→ 1, the above numbers approach to the spectrum of Dirac
operator D for the sphere S2
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Heat Trace: Introduction

Definition

Z (t) := tr(e−t∆) =
∞

∑
n=1

e−λnt

Z (t) = tr(e−t∆) =
∫
M

K (t,x ,x)dx

∼ (4πt)−n/2(
∫
M

a0(x) +
∫
M

a1(x)t +
∫
M

a2(x)t2 + ...)

in the case with no boundary.

Since a0 = 1, the first term in this expansion is the volume of M.
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Heat Trace: Sphere S2

The heat trace for S2

Z (t) =
∞

∑
k=0

(2k + 1)e−(k2+k)t .

We will use this and the Euler-Maclaurin Summation Formula to find
the expansion for the heat trace.
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Heat Trace: Sphere S2 Details

Use Euler-Maclaurin Summation Formula:

b

∑
k=a

f (k) =

b∫
a

f (x)dx +
f (a) + f (b)

2
+

m

∑
k=2

Bk

k!
(f (k−1)(b)− f (k−1)(a)) +Rm

where B0 = 1, B1 =− 1
2 , B2 = 1

6 , B2i+1 = 0, i = 1,2, ... are the Bernoulli numbers and Rm is the remainder.

In our case, f (k) = (2k + 1)e−(k2+k)t , a = 0, b = ∞. So

Z (t) =

∞∫
0

(2x + 1)e−(x2+x)t dx +
1

2
+

+
1

6

(
2e−(x2+x)t − t(2x + 1)2e−(x2+x)t

)∣∣∣∞
0

+ ...
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Heat Trace: Sphere S2 Details Continue

The first integral is:∫
∞

0
(2x + 1)e−(x2+x)t dx =− 1

t
e−(x2+x)t

∣∣∣∣∞
0

=
1

t
.

Then we have

Z (t) =
1

t
+

1

2
+

1

12
(−2 + t) + . . . =

=
1

4πt

(
4π +

4

3
πt + . . .

)
At the same time, we know that

a0 = Area
(
S2
)

= 4π

and

a1 =
1

3

∫
S2
K dx =

4

3
π

where K is Gaussian curvature and scalar curvature S(x) = 2K .
In this way, we can compute all terms in the expansion.
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Heat Trace: Diamond fractals

The heat trace for diamond fractal is:

Z (t) =
∞

∑
k=1

e−k
2π2t + (ldh−1−1)

∞

∑
n=0

lndh
∞

∑
k=1

e−k
2π2tlndω

.

Log periodic oscillations of the heat trace

Z (t)∼ c

t
ds
2

(
1 + α cos

(
2π

dω log l
log t + ϕ

)
+ . . .

)
for some real constants c ,αand ϕ. Recall that

dω =
2dh
ds

where ds is spectral dimension and dh is Hausdorff dimension.
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Heat Trace: Diamond Fractals Graph

Figure: The log periodic oscillations, at small t, for the heat trace Z (t) on a
fractal, normalized relative to the leading term Zleading (t) = c/tds/2. The solid
curve is exact; the dashed curve is the first two terms in the approximate
expression.
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Heat Trace: Quantum sphere

The heat trace for quantum sphere is:

Z (t) =
∞

∑
k=1

e
q−k−qk
q−q−1 t

However, we don’t know the heat trace expansion for quantum sphere.
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ζ -function: Introduction

Definition

Spectral ζ -function

ζ (s) =
1

λ s
1

+
1

λ s
2

+ . . . =
∞

∑
k=1

1

λ s
k

where Spec(∆) = {0 < λ1 ≤ λ2 ≤ . . .}.

ζ (s) has analytical continuation

ζ (s) : C\{n
2
− j}→ C

where dimM = n and j = 0,1, . . . .

ζR(s) =
1

1s
+

1

2s
+

1

3s
+ . . . =

∞

∑
k=1

1

ks

is Riemann ζ -function for Re s > 1.
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ζ -function: Sphere S2

Polynomial growth of eigenvalues and multiplicities k2 and k
respectively.

The spectral ζ -function for S2 is

ζS2(s)∼
∞

∑
k=1

k

(k2)s
= ζR(2s−1).

ζ -function has simple real poles {1− j} where j = 0,1, . . ., with the
largest pole at s = 1.
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ζ -function: Diamond fractals

The spectral ζ -function of the fractals is

ζD(s) =
ζR(2s)

π2s
ldh−1

(
1− l1−dω s

1− ldh−dω s

)
.

It has simple complex poles at

s =
ds
2

+ i
2πm

dω log l
, m ∈ Z

with a spectral dimension ds , a walk dimension dω , Hausdorff
dimension dh and a spatial-decimation factor l .
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ζ -function: Diamond Fractals Graph

Figure: Sketch of the complex pole structure of the zeta function for a fractal
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ζ -function: Quantum Sphere

The spectral ζ -function of the quantum sphere is

ζq(s) = 4(1−q2)2
∞

∑
k=0

Γ(s +k)

k!Γ(s)

q2k

(1−qs+2k)
2

Note that Γ(s) is an extension of factorials to s ∈ C with Re(s) > 0
and

Γ(s) =
∫

∞

0
e−t

ts

t
dt

All poles of ζq(s) are complex of the second order:

−2k + i
2π

logq
m

where k ∈ N and m ∈ Z.
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Questions
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