Spectral Geometry in Non-Standard Domains

Xiaozhu Li, Leanne Mezuman, Kateryna Tatarko, Minliu Wu, Ruoqi Yu

Fields Institute

Masoud Khalkhali

August 29, 2014

Li, Mezuman, Tatarko, Wu, Yu [Spectral Geometry](#page-35-0) August 29, 2014 1 / 36

4 0 8

2 [Eigenvalues and Multiplicities](#page-19-0)

≃

∢ ロ ▶ - ィ _ロ ▶ - ィ

э

活

Background: Heat Equation

Laplacian in
$$
\mathbb{R}^n
$$
: $\Delta = -\sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$.

Let $M \in \mathbb{R}^n$ be a bounded domain with piecewise smooth boundary. The heat equation

$$
\begin{cases} \frac{\partial \varphi}{\partial t} = -\Delta \varphi \\ \varphi(x,0) = \varphi_0(x) \\ \varphi(x,t) = 0, \ \forall x \in \partial M, t \ge 0. \end{cases}
$$

is the evolution equation for distribution of temperature on M given the initial ($t = 0$) distribution by φ_0 .

• It has a formal solution given by

$$
\varphi(x,t)=e^{-t\Delta}\varphi_0,\qquad t>0
$$

An eigenvalue problem for a bounded domain $M\subset \mathbb{R}^n$ with piecewise smooth boundary:

$$
\begin{cases} \Delta u = \lambda u \\ u|_{\partial M} = 0, \ u \neq 0. \end{cases}
$$

Which gives us a discrete set of positive numbers

$$
Spec(M) = \{\lambda_1, \lambda_2, \cdots\}
$$

where

$$
0<\lambda_1\leq\lambda_2\leq\cdots\to\infty
$$

∢ ロ ▶ - ィ _ロ ▶ - ィ

For a bounded domain M with piecewise smooth boundary in \mathbb{R}^n

$$
N(\lambda) \sim \frac{\omega_n {\rm Vol}(M)}{(2\pi)^n} \lambda^{n/2} \qquad \lambda \to \infty
$$

where ω_n is the volume of the unit ball in \mathbb{R}^n and

$$
N(\lambda)=\#\{\lambda_i\leq \lambda\}
$$

is the eigenvalue counting function: total number of eigenvalues less than or equal to a given λ .

Example

Consider the case of M as a unit square in \mathbb{R}^2 . We have

$$
\omega_2=\pi\times 1^2=\pi
$$

$$
\text{Vol}(M)=1\times 1=1
$$

Then,

$$
\mathcal{N}(\lambda)\sim \frac{\pi}{(2\pi)^2}\,\lambda
$$

and this gives us

$$
N(\lambda)\sim \frac{1}{4\pi}\lambda,~~\lambda\to\infty
$$

 \leftarrow

 QQ

Background: Weyl's Law

Figure: Weyl's Law: One can hear the area of a drum.

4 0 8

 QQ

Background: Weyl's Law

Note: By Weyl's Law, one can only hear the area of a drum but not the shape.

Figure: Isospectral but not isometric

 \leftarrow

• Fundamental solution of the heat equation

$$
\begin{cases}\n\frac{\partial K(t,x,y)}{\partial t} = -\Delta K(t,x,y) \\
K(t,x,y) = 0, \forall x, y \in \partial M, t \ge 0. \\
\lim_{t \to 0} K(t,x,y) = \delta_x(y) \text{ for all } x, y \in M,\n\end{cases}
$$

Kernel of the integral operator $e^{-t\Delta}$

$$
e^{-t\Delta}f(x) = \int_M K(t,x,y)f(y)dy
$$

• In terms of eigenvalues and orthonormal eigenfunctions of Δ

$$
K(t,x,y)=\sum_{n=0}^{\infty}e^{-\lambda_nt}\phi_n(x)\phi_n(y).
$$

4 0 8

Background: (Asymptotic) Heat Kernel Expansion Theorem

Theorem

Let M be a closed manifold with boundary, the expansion would be of the form

$$
K(t,x,x) \sim (4\pi t)^{-\frac{n}{2}}(b_0(x) + b_1(x)t^{\frac{1}{2}} + b_2(x)t + ...)
$$

as $t \rightarrow 0$.

In this case, we only know that

$$
b_0(x)=1
$$

∢ ⊡

Background: Jacobi's Theta Function

The Θ-function is

$$
\Theta(t)=\sum_{n=-\infty}^{+\infty}e^{-\pi n^2t},\ t>0.
$$

Using Poisson's summation formula we get the relation:

$$
\Theta(t)=\frac{1}{\sqrt{t}}\Theta(\frac{1}{t}),\,\,t>0.
$$

We also note the useful property that:

$$
\Theta(t)\sim\frac{1}{\sqrt{t}},\qquad t\to 0
$$

 \leftarrow

Background: (Asymptotic) Heat Kernel Expansion Theorem

Theorem

Let M be a closed manifold, with no boundary, then we have an expansion of the form

$$
K(t,x,x) \sim (4\pi t)^{-\frac{n}{2}}(a_0(x) + a_1(x)t + a_2(x)t^2 + ...)
$$

as $t \rightarrow 0$.

Additionally we have that

$$
a_0(x) = 1
$$

$$
a_1(x) = \frac{1}{6}S(x)
$$

where $S(x)$ is the scalar curvature of M and $S(x) = 2K(x)$ with $K(x)$ denoting the Gaussian curvature.

Background: (Asymptotic) Heat Kernel Expansion **Theorem**

Example

 \bullet Gaussian curvature of a sphere with radius R

$$
K(x)=\frac{1}{R^2}
$$

• Gaussian curvature of a flat plane

$$
K(x)=0
$$

Gaussian curvature of a cylinder (two-dimensional)

 $K(x) = 0$

A two-dimensional cylinder comes from a flat plane.

Li, Mezuman, Tatarko, Wu, Yu [Spectral Geometry](#page-0-0) August 29, 2014 13 / 36

◂**◻▸ ◂⁄** ▸

We focus on the no boundary cases, thus, we would use the heat kernel expansion for domains with no boundary.

- Sphere: $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$
- **o** Fractals
- **Quantum Sphere**

Cases to Consider: Fractals Example: Cantor Set

Figure: Construction of the triadic Cantor set. In each iteration, the middle third of all the intervals is removed.

4 0 8

Cases to Consider: Fractals Example: Diamond fractals

Figure: The first 2 iterations for diamond fractals $D_{4,2}$, $D_{6,2}$, $D_{6,3}$

Figure: Further iterations of the diamond fractal $D_{4,2}$

Cases to Consider: Fractals

Hausdorff-Besicovitch dimension d_h :

$$
d_h = \lim_{r \to 0} \frac{\ln V(r)}{\ln r}
$$

where $V(r)$ is the volume of the fractal at length scale r.

Spectral dimension d_s :

$$
d_s = -2 \lim_{t \to 0} \frac{\frac{d}{dt} \ln Z(t)}{\frac{d}{dt} \ln t}
$$

where $Z(t)$ is the heat trace.

Walk dimension d_w :

$$
d_w = \frac{2d_h}{d_s}
$$

Li, Mezuman, Tatarko, Wu, Yu Summan, 2008 [Spectral Geometry](#page-0-0) August 29, 2014 17 / 36

Cases to Consider: Quantum Sphere S^2_q q^2 - Noncommutative Geometry

$Geometry = Committee Algebra$

Quantum sphere is noncommutative geometry. It's C^* -algebra.

Cases to Consider: Quantum Sphere S^2_q q

Relations for quantum sphere \mathcal{S}_q^2 $A, B \in M_n(\mathbb{C})$

$$
AB = q2BA
$$

\n
$$
AB^* = q^{-2}B^*A
$$

\n
$$
BB^* = q^{-2}A(1 - A)
$$

\n
$$
B^*B = A(1 - q^2A)
$$

for some $0 < q < 1$

4 0 8

Eigenvalues and multiplicities for Laplacian are

$$
\lambda_k = k(k+1),
$$

$$
deg_k = 2k+1
$$

where $k = 0, 1, 2, 3, ...$

Notice that eigenvalues grow quadratically with multiplicities growing linearly.

Eigenvalues and Multiplicities for Laplacian: Diamond Fractals

Non degenerate eigenvalues: $\pi^2 k^2$, for $k = 1, 2, 3, ...$ Degenerate eigenvalues (iterated eigenvalues):

$$
\lambda_k = \pi^2 k^2 L_n^{d_w}
$$

obtained by rescaling dimensionless length L_n and time T_n at each iteration n according to $L_n^{d_w} = \mathcal{T}_n$. Multiplicities

$$
deg_k = BL_n^{d_h} = B(I^{d_h})^n
$$

where $B=$ / $^{d_h-1}-1$ is the branching factor of the fractal and / d_h is the number of links into which a given link is divided.

The eigenvalues and multiplicities grow exponentially.

Eigenvalues and Multiplicities for Dirac operator D: Quantum Sphere

Non degenerate eigenvalues for Dirac operator D such that $D^2=\Delta$:

$$
\lambda_k = \frac{q^{k+1/2} - q^{-(k+1/2)}}{q - q^{-1}}
$$

where

$$
k = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots
$$

Note: As $q \rightarrow 1$, the above numbers approach to the spectrum of Dirac operator D for the sphere \mathcal{S}^2

Definition

$$
Z(t) := tr(e^{-t\Delta}) = \sum_{n=1}^{\infty} e^{-\lambda_n t}
$$

$$
Z(t) = tr(e^{-t\Delta}) = \int_{M} K(t, x, x) dx
$$

$$
\sim (4\pi t)^{-n/2} (\int_{M} a_0(x) + \int_{M} a_1(x) t + \int_{M} a_2(x) t^2 + ...)
$$

in the case with no boundary.

Since $a_0 = 1$, the first term in this expansion is the volume of M.

4 0 8

The heat trace for S^2

$$
Z(t) = \sum_{k=0}^{\infty} (2k+1) e^{-(k^2+k)t}.
$$

We will use this and the Euler-Maclaurin Summation Formula to find the expansion for the heat trace.

4 0 8

 \mathbf{r}

Use Euler-Maclaurin Summation Formula:

$$
\sum_{k=a}^{b} f(k) = \int_{a}^{b} f(x) dx + \frac{f(a) + f(b)}{2} + \sum_{k=2}^{m} \frac{B_k}{k!} (f^{(k-1)}(b) - f^{(k-1)}(a)) + R_m
$$

where $B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_{2i+1} = 0$, $i = 1, 2, ...$ are the **Bernoulli numbers** and R_m is the remainder.

In our case,
$$
f(k) = (2k+1)e^{-(k^2+k)t}
$$
, $a = 0$, $b = \infty$. So

$$
Z(t) = \int_{0}^{\infty} (2x+1)e^{-(x^2+x)t} dx + \frac{1}{2} + \frac{1}{6} \left(2e^{-(x^2+x)t} - t(2x+1)^2 e^{-(x^2+x)t}\right)\Big|_{0}^{\infty} + \dots
$$

∢ ロ ▶ - ィ _ロ ▶ - ィ

目

 QQ

Heat Trace: Sphere \mathcal{S}^2 Details Continue

The first integral is:

$$
\int_0^\infty (2x+1)e^{-(x^2+x)t} dx = -\frac{1}{t}e^{-(x^2+x)t}\Big|_0^\infty = \frac{1}{t}.
$$

Then we have

$$
Z(t) = \frac{1}{t} + \frac{1}{2} + \frac{1}{12}(-2 + t) + \dots =
$$

=
$$
\frac{1}{4\pi t} \left(4\pi + \frac{4}{3}\pi t + \dots\right)
$$

At the same time, we know that

$$
a_0 = Area(S^2) = 4\pi
$$

and

$$
a_1 = \frac{1}{3} \int_{S^2} K \, dx = \frac{4}{3} \pi
$$

where K is Gaussian curvature and scalar curvature $S(x) = 2K$. In this way, we can compute all terms in the ex[pan](#page-24-0)[sio](#page-26-0)[n.](#page-25-0)

Li, Mezuman, Tatarko, Wu, Yu [Spectral Geometry](#page-0-0) August 29, 2014 26 / 36

 QQ

• The heat trace for diamond fractal is:

$$
Z(t) = \sum_{k=1}^{\infty} e^{-k^2 \pi^2 t} + (l^{d_h-1}-1) \sum_{n=0}^{\infty} l^{n d_h} \sum_{k=1}^{\infty} e^{-k^2 \pi^2 t^{n d_w}}.
$$

• Log periodic oscillations of the heat trace

$$
Z(t) \sim \frac{c}{t^{\frac{ds}{2}}} \left(1 + \alpha \cos \left(\frac{2\pi}{d_{\omega} \log t} \log t + \varphi \right) + \ldots \right)
$$

for some real constants c, α and φ . Recall that

$$
d_{\omega}=\frac{2d_h}{d_s}
$$

where $d_{\mathfrak{s}}$ is spectral dimension and d_h is Hausdorff dimension.

Heat Trace: Diamond Fractals Graph

Figure: The log periodic oscillations, at small t, for the heat trace $Z(t)$ on a fractal, normalized relative to the leading term $Z_{\textit{leading}}(t)$ $=$ $c/t^{d_{\textit{s}}/2}.$ The solid curve is exact; the dashed curve is the first two terms in the approximate expression.

• The heat trace for quantum sphere is:

$$
Z(t) = \sum_{k=1}^{\infty} e^{\frac{q^{-k}-q^k}{q-q^{-1}}t}
$$

However, we don't know the heat trace expansion for quantum sphere.

4 0 8

ζ -function: Introduction

Definition

 \bullet

Spectral ζ -function

$$
\zeta(s)=\frac{1}{\lambda_1^s}+\frac{1}{\lambda_2^s}+\ldots=\sum_{k=1}^\infty\frac{1}{\lambda_k^s}
$$

where $Spec(\Delta) = \{0 < \lambda_1 \leq \lambda_2 \leq \ldots\}.$

 \circ $\zeta(s)$ has analytical continuation

$$
\zeta(s): \mathbb{C}\setminus\{\frac{n}{2}-j\}\to\mathbb{C}
$$

where $\dim M = n$ and $j = 0, 1, \ldots$.

$$
\zeta_R(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \ldots = \sum_{k=1}^{\infty} \frac{1}{k^s}
$$

 \leftarrow

is Riemann ζ -function for $Re \ s > 1$.

- Polynomial growth of eigenvalues and multiplicities k^2 and k respectively.
- The spectral ζ -function for S^2 is

$$
\zeta_{S^2}(s) \sim \sum_{k=1}^{\infty} \frac{k}{(k^2)^s} = \zeta_R(2s-1).
$$

 \bullet ζ-function has simple real poles $\{1-i\}$ where $j = 0, 1, \ldots$, with the largest pole at $s = 1$.

• The spectral *ζ*-function of the fractals is

$$
\zeta_D(s)=\frac{\zeta_R(2s)}{\pi^{2s}}l^{d_h-1}\left(\frac{1-l^{1-d_\omega s}}{1-l^{d_h-d_\omega s}}\right).
$$

• It has simple complex poles at

$$
s = \frac{d_s}{2} + i \frac{2\pi m}{d_{\omega} \log l}, \ m \in \mathbb{Z}
$$

with a spectral dimension d_s , a walk dimension d_ω , Hausdorff dimension d_h and a spatial-decimation factor *l*.

ζ -function: Diamond Fractals Graph

Figure: Sketch of the complex pole structure of the zeta function for a fractal

4 0 8

• The spectral *ζ*-function of the quantum sphere is

$$
\zeta_q(s) = 4(1-q^2)^2 \sum_{k=0}^{\infty} \frac{\Gamma(s+k)}{k!\Gamma(s)} \frac{q^{2k}}{(1-q^{s+2k})^2}
$$

Note that $\Gamma(s)$ is an extension of factorials to $s \in \mathbb{C}$ with $Re(s) > 0$ and

$$
\Gamma(s) = \int_0^\infty e^{-t} \frac{t^s}{t} dt
$$

• All poles of $\zeta_a(s)$ are complex of the second order:

$$
-2k + i\frac{2\pi}{\log q}m
$$

where $k \in \mathbb{N}$ and $m \in \mathbb{Z}$.

References

A. Connes (2012)

Noncommutative Geometry: The Music of Quantum Spheres

\blacksquare G.V. Dunne (2012)

Heat kernels and zeta functions on fractals Department of Physics, University of Connecticut, 1 – 19.

M. Eckstein, B. lochum, A. Sitarz (2013) Heat trace and spectral action on the standard Podles sphere Commun. Math. Phys., 1 -rdf- 44.

F.

M. Kac (1966) Can one hear the shape of a drum?

The American Mathematical Monthly, $1 - 23$.

M. Khalkhali (2014)

The Music of Quantum Spheres: http://www.fields.utoronto.ca/videoarchive/static/2014/05/313-3292/mergedvideo.ogv.

A. Young (2003)

Eigenvalues and the heat kernel, $1 - 11$.

 QQ

K ロ ト K 何 ト K ヨ ト K

Questions

Þ

× ×

重