The Model Theory of C^* -algebras

Diego Caudillo Amador, Jonathan Berger, Jamal Kawach, Se-jin Kim, Yushen Zhang

August 26, 2014

With thanks to Bradd Hart, Ilijas Farah, and Christopher Eagle

Model theory group [The Model Theory of](#page-72-0) C^{*}-algebras

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

$$
||a|| = \sup_{||x|| \le 1} ||ax||.
$$

 \leftarrow \Box \rightarrow

メタトメ ミトメ ミト

 OQ

$$
||a|| = \sup_{||x|| \le 1} ||ax||.
$$

E.g., the space $M_n(\mathbb{C})$ of $n \times n$ -matrices on \mathbb{C}^n is a C ∗ -algebra.

イロン イ押ン イヨン イヨン

$$
||a|| = \sup_{||x|| \le 1} ||ax||.
$$

- *E.g.*, the space $M_n(\mathbb{C})$ of $n \times n$ -matrices on \mathbb{C}^n is a C ∗ -algebra.
- One can abstractly axiomatize these C^* -algebras.

イロン イ押ン イヨン イヨン

$$
||a|| = \sup_{||x|| \le 1} ||ax||.
$$

- *E.g.*, the space $M_n(\mathbb{C})$ of $n \times n$ -matrices on \mathbb{C}^n is a C ∗ -algebra.
- One can abstractly axiomatize these C^* -algebras.
- A C^* -algebra is unital if there is a multiplicative identity denoted 1.

イロメ イ母メ イヨメ イヨメー

$$
||a|| = \sup_{||x|| \le 1} ||ax||.
$$

- *E.g.*, the space $M_n(\mathbb{C})$ of $n \times n$ -matrices on \mathbb{C}^n is a C ∗ -algebra.
- One can abstractly axiomatize these C^* -algebras.
- A C^* -algebra is unital if there is a multiplicative identity denoted 1.
- A C^* -algebra is Abelian if the multiplication operation commutes.

We will only be concerned with the unital Abelian case today. In this case, we have the following theorem:

and the first

メタトメミドメミド

 OQ

We will only be concerned with the unital Abelian case today. In this case, we have the following theorem:

Gelfand-Naimark

Given any unital Abelian C^* -algebra A, there is a compact Hausdorff space X such that

 $A \cong C(X)$

isometrically, where $C(X)$ is the space of continuous functions on X with addition and multiplcation defined pointwise and

$$
f^*(x) := \overline{f(x)}.
$$

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

We will only be concerned with the unital Abelian case today. In this case, we have the following theorem:

Gelfand-Naimark

Given any unital Abelian C^* -algebra A, there is a compact Hausdorff space X such that

 $A \cong C(X)$

isometrically, where $C(X)$ is the space of continuous functions on X with addition and multiplcation defined pointwise and

$$
f^*(x) := \overline{f(x)}.
$$

We now turn to continuous logic.

 $A\oplus A\rightarrow A\oplus A\rightarrow A\oplus A$

What is continuous logic?

 \leftarrow \Box \rightarrow

メタトメ ミトメ ミト

Þ

L formulas

An L-formula is any expression made by combining

L formulas

An L-formula is any expression made by combining

 $\textbf{D} \ ||p(\bar{\text{x}})||$ for $p(\bar{\text{x}})$ a * -polynomial;

L formulas

An L-formula is any expression made by combining

- $\textbf{D} \ ||p(\bar{\text{x}})||$ for $p(\bar{\text{x}})$ a * -polynomial;
- 2 the operations max, min, and \div , where $x - y := \max\{x - y, 0\};$

L formulas

An L-formula is any expression made by combining

- $\textbf{D} \ ||p(\bar{\text{x}})||$ for $p(\bar{\text{x}})$ a * -polynomial;
- 2 the operations max, min, and \div , where $x - y := \max\{x - y, 0\};$
- ³ multiplication of a function by a real number; and

L formulas

An L-formula is any expression made by combining

- $\textbf{D} \ ||p(\bar{\text{x}})||$ for $p(\bar{\text{x}})$ a * -polynomial;
- 2 the operations max, min, and \div , where $x - y := \max\{x - y, 0\};$
- ³ multiplication of a function by a real number; and
- $\textbf{\texttt{4}}$ the operations sup $_{||\mathsf{x}||\leq 1}$ and $\inf_{||\mathsf{x}||\leq 1}$

L formulas

An L-formula is any expression made by combining

- $\textbf{D} \ ||p(\bar{\text{x}})||$ for $p(\bar{\text{x}})$ a * -polynomial;
- 2 the operations max, min, and \div , where $x - y := \max\{x - y, 0\};$
- ³ multiplication of a function by a real number; and
- $\textbf{\texttt{4}}$ the operations sup $_{||\mathsf{x}||\leq 1}$ and $\inf_{||\mathsf{x}||\leq 1}$

such that the resulting function *makes sense*.

L formulas

An L-formula is any expression made by combining

- $\textbf{D} \ ||p(\bar{\text{x}})||$ for $p(\bar{\text{x}})$ a * -polynomial;
- 2 the operations max, min, and \div , where $x - y := \max\{x - y, 0\};$
- ³ multiplication of a function by a real number; and
- $\textbf{\texttt{4}}$ the operations sup $_{||\mathsf{x}||\leq 1}$ and $\inf_{||\mathsf{x}||\leq 1}$

such that the resulting function *makes sense*.

When we plug in elements of our C^* -algebra into the free variables, we can evaluate a formula to a real number.

L formulas

An L-formula is any expression made by combining

- $\textbf{D} \ ||p(\bar{\text{x}})||$ for $p(\bar{\text{x}})$ a * -polynomial;
- 2 the operations max, min, and \div , where $x - y := \max\{x - y, 0\};$
- ³ multiplication of a function by a real number; and
- $\textbf{\texttt{4}}$ the operations sup $_{||\mathsf{x}||\leq 1}$ and in $\mathsf{f}_{||\mathsf{x}||\leq 1}$

such that the resulting function *makes sense*.

- When we plug in elements of our C^* -algebra into the free variables, we can evaluate a formula to a real number.
- We call any combination of max, min, \div , and multiplication by real numbers connectives

L formulas

An L-formula is any expression made by combining

- $\textbf{D} \ ||p(\bar{\text{x}})||$ for $p(\bar{\text{x}})$ a * -polynomial;
- 2 the operations max, min, and \div , where $x - y := \max\{x - y, 0\};$
- ³ multiplication of a function by a real number; and
- $\textbf{\texttt{4}}$ the operations sup $_{||\mathsf{x}||\leq 1}$ and in $\mathsf{f}_{||\mathsf{x}||\leq 1}$

such that the resulting function *makes sense*.

- When we plug in elements of our C^* -algebra into the free variables, we can evaluate a formula to a real number.
- We call any combination of max, min, \div , and multiplication by real numbers connectives
- We call $\sup_{||x|| \leq 1}$ and $\inf_{||x|| \leq 1}$ quantifiers.

L formulas

An L-formula is any expression made by combining

- $\textbf{D} \ ||p(\bar{\text{x}})||$ for $p(\bar{\text{x}})$ a * -polynomial;
- 2 the operations max, min, and \div , where $x - y := \max\{x - y, 0\};$
- ³ multiplication of a function by a real number; and
- $\textbf{\texttt{4}}$ the operations sup $_{||\mathsf{x}||\leq 1}$ and in $\mathsf{f}_{||\mathsf{x}||\leq 1}$

such that the resulting function *makes sense*.

- When we plug in elements of our C^* -algebra into the free variables, we can evaluate a formula to a real number.
- We call any combination of max, min, \div , and multiplication by real numbers connectives
- We call $\sup_{||x|| \leq 1}$ and $\inf_{||x|| \leq 1}$ quantifiers.
- We call all formulas with no free variables sentences.

max acts like ∧

イロメ イ部メ イモメ イモメー

目

- max acts like ∧
- min acts like ∨

イロメ イ部メ イ君メ イ君メー

Þ

- max acts like ∧
- min acts like ∨
- \bullet ÷ acts like \rightarrow

イロト イ部 トイモト イモトー

Þ

- max acts like ∧
- min acts like ∨
- \bullet \div acts like \rightarrow
- sup $_{||\mathsf{x}||\leq 1}$ acts like $\forall\mathsf{x}$

イロト イ部 トイ君 トイ君 トー

Þ

- max acts like ∧
- min acts like ∨
- \bullet \div acts like \rightarrow
- sup $_{||\mathsf{x}||\leq 1}$ acts like $\forall\mathsf{x}$
- inf $|x||<1$ acts like $\exists x$

イロト イ部 トイ君 トイ君 トー

 OQ

- max acts like ∧
- min acts like ∨
- \bullet ÷ acts like \rightarrow
- sup $_{||\mathsf{x}||\leq 1}$ acts like $\forall\mathsf{x}$
- inf $|x||<1$ acts like $\exists x$
- Notice we never referred to the specific C^* -algebra in question.

4.000.00

メ 何 メ メ ヨ メ ス ヨ メー

 OQ

Given two C^* -algebras A and B, we can ask when they have the same value on sentences.

 \leftarrow \Box \rightarrow

メタトメ ミトメ ミト

 OQ

- Given two C^* -algebras A and B, we can ask when they have the same value on sentences.
- If they have the same value for enough sentences, then it is possible to solve a problem about A by solving it for $B!$

メラト メミト メミトー

A simple exercise

Calculate

$$
\sup_{\|x\| \le 1} \inf_{\|y\| \le 1} \sup_{\|z\| \le 1} \max\{\|x^2 - y + z - xyz + x - xy - 2\|,
$$
\n
$$
\min\{\|x^6 - y^{90200} + z^{299792458} - 56834\|, \|1 - y^{902}x^{808}\|\}\}
$$
\ninterpreting the symbols in C[0, 1].

イロト イ団 トイモト イモト

目

This is a hard calculation.

メロト メタト メミト メミトー

目目 $2Q$ This is a hard calculation.

Quantifier Elimination

A admits quantifier elimination provided that, for any L formula $\varphi(x_1, \ldots, x_n)$, there exists a sequence $\psi_N(x_1, \ldots, x_n)$ of formulas without any instance of quantifiers such that

$$
\lim_{N\to\infty}\sup_{x_1,\ldots x_n\in D_1}|\psi_N(x_1,\ldots,x_n)-\varphi(x_1,\ldots,x_n)|=0
$$

where the formulas are interpreted in the C^* -algebra A .

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Fix a C*-algebra A.

イロト イ団 トイ ミト イモト

目

- Fix a C*-algebra A.
- \bullet Define the spectrum of $a \in A$ as

 $\mathsf{sp}(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible} \}$

イロン イ押ン イヨン イヨン

 OQ

- Fix a C*-algebra A.
- Define the spectrum of $a \in A$ as

 $\mathsf{sp}(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible} \}$

These generalize the idea of eigenvalues to any space.

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right\rangle & \left\langle \begin{array}{ccc} \square & \rightarrow & \left\langle \begin{array}{ccc} \square & \end{array} \right\rangle \end{array} \right. \end{array} \right.$

 OQ

- Fix a C*-algebra A.
- Define the spectrum of $a \in A$ as

 $\mathsf{sp}(a) = \{ \lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible} \}$

- These generalize the idea of eigenvalues to any space.
- \bullet The spectrum sp(a) is a non-empty compact set.

メ 何 ト メ ヨ ト メ ヨ トー

- Fix a C*-algebra A.
- Define the spectrum of $a \in A$ as

 $\mathsf{sp}(a) = \{\lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible}\}\$

- These generalize the idea of eigenvalues to any space.
- \bullet The spectrum sp(a) is a non-empty compact set.
- In the case when $A = C(X)$, sp(a) = range(a).

イタン イミン イミン
The spectral theorem

• The spectral theorem tells us

イロメ イ部メ イモメ イモメー

Þ

 $2Q$

The spectral theorem

• The spectral theorem tells us

Spectral theorem

Given a normal operator a in a C^* algebra A , there is an isometry

$$
u:C^*(1,a)\to C(\mathrm{sp}(a))
$$

where $C^*(1, a)$ is the C^* -algebra generated by 1 and a, $u(1) = 1$, and $u(a)$ is the linear function $x \mapsto x$.

The spectral theorem

• The spectral theorem tells us

Spectral theorem

Given a normal operator a in a C^* algebra A , there is an isometry

$$
u:C^*(1,a)\to C(\mathrm{sp}(a))
$$

where $C^*(1, a)$ is the C^* -algebra generated by 1 and a, $u(1) = 1$, and $u(a)$ is the linear function $x \mapsto x$.

• Let $a, b \in C(X)$ have $sp(a) = sp(b)$.

4 伊 ▶

• The spectral theorem tells us

Spectral theorem

Given a normal operator a in a C^* algebra A , there is an isometry

$$
u:C^*(1,a)\to C(\mathrm{sp}(a))
$$

where $C^*(1, a)$ is the C^* -algebra generated by 1 and a, $u(1) = 1$, and $u(a)$ is the linear function $x \mapsto x$.

- Let $a, b \in C(X)$ have $sp(a) = sp(b)$.
- The spectral theorem guarantees that there is an isometry

$$
C^*(1,a)\cong C^*(1,b)
$$

given by sending 1 to 1 and a to b .

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Given a formula $\varphi(x)$ with no quantifiers, $\varphi(\mathsf{x}) = \mathsf{u}(||p_1(\mathsf{x})||, \ldots, ||p_n(\mathsf{x})||)$ for some * -polynomials p_1, \ldots, p_n and u some connective.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A$

 PQQ

Given a formula $\varphi(x)$ with no quantifiers, $\varphi(\mathsf{x}) = \mathsf{u}(||p_1(\mathsf{x})||, \ldots, ||p_n(\mathsf{x})||)$ for some * -polynomials p_1, \ldots, p_n and u some connective.

• Since
$$
sp(a) = sp(b), ||p_k(a)|| = ||p_k(b)||
$$
.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A$

 PQQ

- Given a formula $\varphi(x)$ with no quantifiers, $\varphi(\mathsf{x}) = \mathsf{u}(||p_1(\mathsf{x})||, \ldots, ||p_n(\mathsf{x})||)$ for some * -polynomials p_1, \ldots, p_n and u some connective.
- Since $sp(a) = sp(b)$, $||p_k(a)|| = ||p_k(b)||$.
- Therefore $\varphi(a) = \varphi(b)$.

K ロ > K @ ▶ K 할 > K 할 > → 할 → 9 Q @

The model $C[0, 1]$ does not eliminate quantifiers.

イロメ イ団メ イモメ イモメー

Þ

 OQ

The model $C[0, 1]$ does not eliminate quantifiers.

Getting quantifier elimination is not going to be easy!

 \leftarrow \Box \rightarrow

メタトメミドメミド

 OQ

∍

イロト イ団 トイモト イモト

 \mathbf{F} Ω

Eagle, Vignati

Given a compact Hausdorff space X in which

4.000.00

メタトメミトメミト

 OQ

Eagle, Vignati

Given a compact Hausdorff space X in which

 \bullet X is of dimension 0, and

4.000.00

メタトメミトメミト

Eagle, Vignati

Given a compact Hausdorff space X in which

- \bullet X is of dimension 0, and
- \bullet X has no isolated points, then

 \leftarrow \Box \rightarrow

イ印 トイヨ トイヨ ト

Eagle, Vignati

Given a compact Hausdorff space X in which

- \bullet X is of dimension 0, and
- \bullet X has no isolated points, then

the space $C(X)$ has quantifier elimination.

 $A\oplus A\rightarrow A\oplus A\rightarrow A\oplus A\quad$

Eagle, Vignati

Given a compact Hausdorff space X in which

- \bullet X is of dimension 0, and
- \bullet X has no isolated points, then

the space $C(X)$ has quantifier elimination.

• For example, given the Cantor space $2^{\mathbb{N}}$, $C(2^{\mathbb{N}})$ has quantifier elimination.

イロメ イ押メ イヨメ イヨメー

Eagle, Vignati

Given a compact Hausdorff space X in which

- \bullet X is of dimension 0, and
- \bullet X has no isolated points, then

the space $C(X)$ has quantifier elimination.

- For example, given the Cantor space $2^{\mathbb{N}}$, $C(2^{\mathbb{N}})$ has quantifier elimination.
- However, simple spaces like \mathbb{C}^n does not admit quantifier elimination.

イロメ イ押メ イヨメ イヨメー

We cannot do better than this.

イロメ イ団メ イモメ イモメー

÷.

 $2Q$

We cannot do better than this.

No isolated point

Given any space X with an isolated point, $C(X)$ does not admit quantifer elimination.

 \leftarrow \Box \rightarrow

メ 何 メ メ ヨ メ ス ヨ メー

 OQ

∍

We say that a function $f: U \rightarrow [0, \infty)$ on a compact Hausdorff space U is a peak function provided

イ何 トラミチ マミト

We say that a function $f: U \rightarrow [0, \infty)$ on a compact Hausdorff space U is a peak function provided

• $sp(f) = [0, 1]$ and

イ伊 トイヨ トイヨ トー

We say that a function $f: U \rightarrow [0, \infty)$ on a compact Hausdorff space U is a peak function provided

- $sp(f) = [0, 1]$ and
- the set $\{x\in U: f(x)>1-\frac{1}{5}\}$ $\frac{1}{5}$ is connected.

メタトメミトメミト

We say that a function $f: U \rightarrow [0, \infty)$ on a compact Hausdorff space U is a peak function provided

- $sp(f) = [0, 1]$ and
- the set $\{x\in U: f(x)>1-\frac{1}{5}\}$ $\frac{1}{5}$ is connected.

Main result

If U is a compact Hausdorff space with a peak function then $C(U)$ does not admit quantifier elimination.

→ 何 ▶ → ヨ ▶ → ヨ ▶

and the first

メラト メミト メミト

 OQ

Ξ

• *n*-manifolds satisfy the criterion

4.000.00

メタトメミトメミト

 OQ

- *n*-manifolds satisfy the criterion
- simplical complexes satisfy the criterion

4 **D** F

メタトメミトメミト

- *n*-manifolds satisfy the criterion
- simplical complexes satisfy the criterion
- CW-complexes satisfy the criterion

メタト メミト メミト

- *n*-manifolds satisfy the criterion
- simplical complexes satisfy the criterion
- CW-complexes satisfy the criterion
- the Hawaiian earring satisfies the criterion

医毛囊 医毛囊 医心

 Ω

4 冊 ▶

- *n*-manifolds satisfy the criterion
- simplical complexes satisfy the criterion
- CW-complexes satisfy the criterion
- the Hawaiian earring satisfies the criterion
- etc.

メタト メミト メミト

We have even more negative results:

イロメ イ団メ イモメ イモメー

 OQ

∍

We have even more negative results:

Thick spaces don't have quantifier elimination

If X is a path-connected, compact, Hausdorff space then $C([0, 1] \times X)$ does not have quantifer elimination.

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

We have even more negative results:

Thick spaces don't have quantifier elimination

If X is a path-connected, compact, Hausdorff space then $C([0, 1] \times X)$ does not have quantifer elimination.

E.g., for the Hilbert cube $[0,1]^{\mathbb{N}}$, $C([0,1]^{\mathbb{N}})$ does not have quantifier elimination.

メ 何 メ メ ヨ メ ス ヨ メ

イロメ イ団メ イモメ イモメー

÷.

 OQ

Question Are there any spaces other than $C(2^N)$ which admits quantifier elimination?

and in

メラト メミト メミト

 OQ

Question Are there any spaces other than $C(2^N)$ which admits quantifier elimination?

Here is an example of a space which is not classified: does $C(2^{\mathbb{N}} \times [0,1])$ admit quantifier elimination?

メタトメミトメミト

Question Are there any spaces other than $C(2^{\mathbb{N}})$ which admits quantifier elimination?

- Here is an example of a space which is not classified: does $C(2^{\mathbb{N}} \times [0,1])$ admit quantifier elimination?
	- \bullet Actually, yesterday we concluded $C(2^{\mathbb{N}}\times [0,1])$ does not have quantifier elimination.

イロメ イ団メ イモメ イモメー

Question Are there any spaces other than $C(2^N)$ which admits quantifier elimination?

- Here is an example of a space which is not classified: does $C(2^{\mathbb{N}} \times [0,1])$ admit quantifier elimination?
	- Actually, yesterday we concluded $C(2^{\mathbb{N}} \times [0,1])$ does not have quantifier elimination.
- What about non-Abelian C*-algebras?

イロメ イ押メ イヨメ イヨメー
We have classified a lot of spaces. This leaves us with

Question Are there any spaces other than $C(2^N)$ which admits quantifier elimination?

- Here is an example of a space which is not classified: does $C(2^{\mathbb{N}} \times [0,1])$ admit quantifier elimination?
	- Actually, yesterday we concluded $C(2^{\mathbb{N}} \times [0,1])$ does not have quantifier elimination.
- What about non-Abelian C*-algebras?
- We can show that $M_n(C(X))$ for $n \geq 2$ does not admit quantifier elimination, but the general question is still open.

イロト イ押 トイヨト イヨト

 Ω