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Basics of C ∗-algebras

A C ∗-algebra is a subalgebra of the algebra B(H) of bounded
linear operators on a Hilbert space H with the operator norm

||a|| = sup
||x ||≤1

||ax || .

E.g., the space Mn(C) of n × n-matrices on Cn is a
C ∗-algebra.

One can abstractly axiomatize these C ∗-algebras.

A C ∗-algebra is unital if there is a multiplicative identity
denoted 1.

A C ∗-algebra is Abelian if the multiplication operation
commutes.
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The Gelfand-Naimark theorem

We will only be concerned with the unital Abelian case today. In
this case, we have the following theorem:

Gelfand-Naimark

Given any unital Abelian C ∗-algebra A, there is a compact
Hausdorff space X such that

A ∼= C (X )

isometrically, where C (X ) is the space of continuous functions on
X with addition and multiplcation defined pointwise and

f ∗(x) := f (x) .

We now turn to continuous logic.
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What is continuous logic?

What is continuous logic?
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Formulas and things

L formulas

An L-formula is any expression made by combining

1 ||p(x̄)|| for p(x̄) a ∗-polynomial;

2 the operations max, min, and .−, where
x .− y := max{x − y , 0};

3 multiplication of a function by a real number; and

4 the operations sup||x ||≤1 and inf ||x ||≤1

such that the resulting function makes sense.

When we plug in elements of our C ∗-algebra into the free
variables, we can evaluate a formula to a real number.

We call any combination of max, min, .−, and multiplication
by real numbers connectives

We call sup||x ||≤1 and inf ||x ||≤1 quantifiers.

We call all formulas with no free variables sentences.
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The continuous logic

max acts like ∧

min acts like ∨
.− acts like →

sup||x ||≤1 acts like ∀x
inf ||x ||≤1 acts like ∃x
Notice we never referred to the specific C ∗-algebra in question.

Model theory group The Model Theory of C∗-algebras



The continuous logic

max acts like ∧
min acts like ∨

.− acts like →
sup||x ||≤1 acts like ∀x
inf ||x ||≤1 acts like ∃x
Notice we never referred to the specific C ∗-algebra in question.

Model theory group The Model Theory of C∗-algebras



The continuous logic

max acts like ∧
min acts like ∨
.− acts like →

sup||x ||≤1 acts like ∀x
inf ||x ||≤1 acts like ∃x
Notice we never referred to the specific C ∗-algebra in question.

Model theory group The Model Theory of C∗-algebras



The continuous logic

max acts like ∧
min acts like ∨
.− acts like →

sup||x ||≤1 acts like ∀x

inf ||x ||≤1 acts like ∃x
Notice we never referred to the specific C ∗-algebra in question.

Model theory group The Model Theory of C∗-algebras



The continuous logic

max acts like ∧
min acts like ∨
.− acts like →

sup||x ||≤1 acts like ∀x
inf ||x ||≤1 acts like ∃x

Notice we never referred to the specific C ∗-algebra in question.

Model theory group The Model Theory of C∗-algebras



The continuous logic

max acts like ∧
min acts like ∨
.− acts like →

sup||x ||≤1 acts like ∀x
inf ||x ||≤1 acts like ∃x
Notice we never referred to the specific C ∗-algebra in question.

Model theory group The Model Theory of C∗-algebras



What is model theory?

Given two C ∗-algebras A and B, we can ask when they have
the same value on sentences.

If they have the same value for enough sentences, then it is
possible to solve a problem about A by solving it for B!
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A calculation

A simple exercise

Calculate

sup
||x ||≤1

inf
||y ||≤1

sup
||z||≤1

max{||x2 − y + z − xyz + x − xy − 2||,

min{||x6 − y90200 + z299792458 − 56834||, ||1− y902x808||}}

interpreting the symbols in C [0, 1].
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Huh?

This is a hard calculation.

Quantifier Elimination

A admits quantifier elimination provided that, for any L formula
ϕ(x1, . . . , xn), there exists a sequence ψN(x1, . . . , xn) of formulas
without any instance of quantifiers such that

lim
N→∞

sup
x1,...xn∈D1

|ψN(x1, . . . , xn)− ϕ(x1, . . . , xn)| = 0

where the formulas are interpreted in the C ∗-algebra A.
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The spectrum

Fix a C ∗-algebra A.

Define the spectrum of a ∈ A as

sp(a) = {λ ∈ C : a− λ1 is not invertible}

These generalize the idea of eigenvalues to any space.

The spectrum sp(a) is a non-empty compact set.

In the case when A = C (X ), sp(a) = range(a).
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The spectral theorem

The spectral theorem tells us

Spectral theorem

Given a normal operator a in a C ∗ algebra A, there is an isometry

u : C ∗(1, a)→ C (sp(a))

where C ∗(1, a) is the C ∗-algebra generated by 1 and a, u(1) = 1,
and u(a) is the linear function x 7→ x .

Let a, b ∈ C (X ) have sp(a) = sp(b).

The spectral theorem guarantees that there is an isometry

C ∗(1, a) ∼= C ∗(1, b)

given by sending 1 to 1 and a to b.
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Given a formula ϕ(x) with no quantifiers,
ϕ(x) = u(||p1(x)||, . . . , ||pn(x)||) for some ∗-polynomials
p1, . . . , pn and u some connective.

Since sp(a) = sp(b), ||pk(a)|| = ||pk(b)||.
Therefore ϕ(a) = ϕ(b).

Model theory group The Model Theory of C∗-algebras



Given a formula ϕ(x) with no quantifiers,
ϕ(x) = u(||p1(x)||, . . . , ||pn(x)||) for some ∗-polynomials
p1, . . . , pn and u some connective.

Since sp(a) = sp(b), ||pk(a)|| = ||pk(b)||.

Therefore ϕ(a) = ϕ(b).

Model theory group The Model Theory of C∗-algebras



Given a formula ϕ(x) with no quantifiers,
ϕ(x) = u(||p1(x)||, . . . , ||pn(x)||) for some ∗-polynomials
p1, . . . , pn and u some connective.

Since sp(a) = sp(b), ||pk(a)|| = ||pk(b)||.
Therefore ϕ(a) = ϕ(b).

Model theory group The Model Theory of C∗-algebras



An illustrative example

The model C [0, 1] does not eliminate quantifiers.

Getting quantifier elimination is not going to be easy!
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Some things do admit Q.E.

There are a few cases in which quantifier elimination holds.

Eagle, Vignati

Given a compact Hausdorff space X in which

X is of dimension 0, and

X has no isolated points, then

the space C (X ) has quantifier elimination.

For example, given the Cantor space 2N, C (2N) has quantifier
elimination.

However, simple spaces like Cn does not admit quantifier
elimination.
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Improving the result

We cannot do better than this.

No isolated point

Given any space X with an isolated point, C (X ) does not admit
quantifer elimination.
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A criterion for failing to have quantifier elimination

Defintion: Peak property

We say that a function f : U → [0,∞) on a compact Hausdorff
space U is a peak function provided

sp(f ) = [0, 1] and

the set {x ∈ U : f (x) > 1− 1
5} is connected.

Main result

If U is a compact Hausdorff space with a peak function then C (U)
does not admit quantifier elimination.
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What spaces satisfy the criterion?

Most nice spaces satisfy our criterion. For example

n-manifolds satisfy the criterion

simplical complexes satisfy the criterion

CW-complexes satisfy the criterion

the Hawaiian earring satisfies the criterion

etc.
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This isn’t looking good for quantifier elimination

We have even more negative results:

Thick spaces don’t have quantifier elimination

If X is a path-connected, compact, Hausdorff space then
C ([0, 1]× X ) does not have quantifer elimination.

E.g., for the Hilbert cube [0, 1]N, C ([0, 1]N) does not have
quantifier elimination.
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Where to go from here

We have classified a lot of spaces. This leaves us with

Question

Are there any spaces other than C (2N) which admits quantifier
elimination?

Here is an example of a space which is not classified: does
C (2N × [0, 1]) admit quantifier elimination?

Actually, yesterday we concluded C (2N × [0, 1]) does not have
quantifier elimination.

What about non-Abelian C ∗-algebras?

We can show that Mn(C (X )) for n ≥ 2 does not admit
quantifier elimination, but the general question is still open.
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