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The experiment

Figure: Experimental results: the samples are placed in two separate test tubes of diameter 5mm and 8mm,
and the smaller test tube is placed inside the larger. The inner test tube is filled with deoxygenated blood; the
outer tube is filled with oxygenated blood. The two samples at equilibrium are shown on the left, where both
appear as white; and the result after the optimal control is applied is shown on the right, where the inner sample
appears black, corresponding to the saturation of the first spin, and magnitude of the other sample represents the
remaining magnetization.
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The Bloch equation and the saturation problem

Normalized magnetization vector of a spin 1/2 particle
M = (x , y , z)
System

dx

dt
= −Γx + u2z

dy

dt
= −Γy − u1z

dz

dt
= γ(1− z) + u1y − u2x ,

γ, Γ: parameters associated to the particle, and 2Γ ≥ γ
N = (0, 0, 1): equilibrium point

Control is a RF magnetic field, u = (u1, u2), |u| ≤ 2π

M ∈ B(0, 1), the Bloch ball

|M|: “color” between 0 and 1
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Saturation problem in minimum time

Set M from the north pole to zero in minimum time

Computation of the optimal solution

Parameter 2Γ ≥ 3γ

By symmetry of revolution one can restrict to 2D system
q̇ = F + uG , |u| ≤ 2π{

ẏ = −Γy − uz

ż = γ(1− z) + uy

Simple system but complicated problem
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Pontryagin Maximum Principle

Lift (q, u)→ (q, p, u)

Use the Pontryagin Maximum Principle (1956)

H = 〈p, q̇〉 = 〈p,F + uG 〉

Necessary optimality condition for q∗, u∗
q̇∗ = ∂H

∂p (q∗, p∗, u∗)

ṗ∗ = −∂H
∂q (q∗, p∗, u∗)

H(q∗(t), p∗(t), u∗(t)) = max|v |≤2π H(q∗(t), p∗(t), v)
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Optimal solution

Two types of arcs forming an optimal solution

u∗(t) = 2π sgn〈p∗(t),G ∗(q∗(t))〉, “bang-bang” arcs

〈p∗(t),G ∗(q∗(t))〉 = 0, “singular” arcs

Computation: two singular arcs, one horizontal and one vertical
derive 〈p∗(t),G ∗(q∗(t))〉 = 0:

〈p, [G ,F ]〉 = 0

〈p, [[G ,F ],F ]〉+ u〈p, [[G ,F ],G ]〉 = 0
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Optimal solution
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(a) Computed optimal solution.
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(b) Experimental result.
Usual inversion sequence in
green, computed sequence
in blue.
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Contrast problem formulation

q = (q1, q2)

{
ẏ1 = −Γ1y1 − uz1 ẏ2 = −Γ2y2 − uz2

ż1 = γ1(1− z1) + uy1 ż2 = γ2(1− z2) + uy2

Contrast problem

q1 → 0 : Saturation in a fixed transfer time T

Maximize |q2(T )|2 : final contrast is |q2(T )|
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Mayer problem

Mayer problem

dq
dt = F (q) + uG (q), |u| ≤ 2π

minu(·) c(q(T )), c : cost

Terminal condition g(q(T )) = 0
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Maximum principle

Necessary optimality condition

dq∗

dt
=
∂H

∂p
,

dp∗

dt
= −∂H

∂q
, H(q∗, p∗, u∗) = max

|v |≤2π
H(q∗, p∗, v)

Boundary condition

q∗(0) fixed

g(q∗(T )) = 0

p∗(T ) = p∗0
∂c
∂q (q∗(T )) +

∑
i σi

∂gi
∂qi

(q∗(T )), p∗0 ≤ 0
(transversality condition)
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Application

As in the saturation problem, but much more complicated.
Two types of arcs

u∗(t) = 2π sgn〈p∗(t),G ∗(q∗(t))〉, “bang-bang” arcs

〈p∗(t),G ∗(q∗(t))〉 = 0, “singular” arcs

Complexity: for singular arcs{
〈p,G 〉 = 〈p, [G ,F ]〉 = 0 : Σ′

〈p, [[G ,F ],F ]〉+ us〈p, [[G ,F ],G ]〉 = 0

Hs = 〈p,F + usG 〉
Hs is a Hamiltonian vector field in dimension 4 with two
constraints, (q, p) ∈ Σ′.
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Analysis of the solution

The maximum principle allows the computation of an optimal
candidate using a SHOOTING METHOD

Shooting method

Compute p∗(0) at the initial time such that (q∗, p∗) is a
solution of the maximum principle

Problem is nonlinear and p∗(0) is not unique

An initial guess about p∗(0) has to be known to compute the
solution using a Newton method. To have such a guess and
to determine a priori the structure BSBSBS of the solution we
use the Hampath code (O. Cots, 2012).
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Numerical continuation method

Regularize Mayer problem into Bolza problem:

min
u(·)

c(q∗(T )) + (1− λ)

∫ T

0
|u(t)|2−λdt, λ ∈ [0, 1]

λ : homotopy parameter

Problem “smoothens” → Newton method to determine the
structure of the solution. Once the structure BSBS is known,
compute the solution accurately using a multiple shooting method.

B. Bonnard and O. Cots, Geometric numerical methods and results in the control
imaging problem in nuclear magnetic resonance, Mathematical Models and Methods
in Applied Sciences, to appear.

O. Cots, Contrôle optimal géométrique : méthodes homotopiques et applications,

Ph.D. thesis, 2012.
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Some numerical results
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Figure: Locally optimal σ+σs control with contrast 0.449 at time
T = 1.1× Tmin for parameters of deoxygenated and oxygenated blood.
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Some numerical results
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Figure: A σ−σsσ+σsσ+σs extremal control with contrast 0.484 at time
T = 1.5× Tmin for parameters of deoxygenated and oxygenated blood.
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Some numerical results
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Figure: Synthesis of locally optimal solutions for deoxygenated and
oxygenated blood. The solution at A is the time-minimal solution. The
path from A to B is the path of zeroes corresponding to the σ+σs
extremal, and the path from B to C is the path of zeroes corresponding
to the extremal of structure σ+σsσ−σsσ−σs . The two branches cross
with the same cost at B, at which point the policy changes from σ+σs to
σ+σsσ−σsσ−σs .
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Matching computed and experimental results
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Sufficient optimality conditions

The maximum principle is only a necessary optimality condition.

More conditions have to be found based on the concept of
conjugate points.

Sufficient optimality condition relies on the technique of
extremal fields and the Hamilton-Jacobi-Bellman equation.

Remark

In the contrast problem there are many local minima which leads
to a very complicated problem.

Works in conplement:

Direct method BOCOP (Martinon)

Linear matrix inequality (LMI) techniques (Claeys)
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Experimental problems

We compute the ideal contrast but in practice the different spin
particles forming the image are affected by homogeneity of the
applied magnetic fields, and the optimal control must be modified
to present a more homogeneous result. WORK IN PROGRESS
using BOCOP

M Lapert, Y Zhang, M A Janich, S J Glaser, and D Sugny,
Exploring the Physical Limits of Saturation Contrast in Magnetic
Resonance Imaging, Scientific Reports 2 (2012).



Experiment Saturation Contrast problem Open problems Singular flow analysis

Numerical simulations for saturation with inhomogeneities

Direct transcription method: time discretization
Continuous OCP → Finite Dimension NLP

BOCOP: Open source toolbox for optimal control
Dynamics discretized by any Runge-Kutta formula
Nonlinear optimization problem solved by interior point (Ipopt)
Derivatives computed by automatic differentiation (AdolC)
www.bocop.org

Multi-spin saturation: Min 1
N

∑N
i=1 |qi (T )|2

Final time is fixed as T = αTmin.
Initial conditions: north pole. Final conditions: none.
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Mono-input, N = 10 spins, B0 = 0, B1 ∈ [0, 0.3], T = Tmin
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Bi-input, N = 10 spins, B0 ∈ [0, 0.5], B1 ∈ [0, 0.3], T = Tmin
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Comparison for N = 10, 25, 50 spins
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Increasing final time T

T/Tmin
1
N

∑N
i=1 |qi (T )|2
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Theoretical problem

A large amount of work has to be done to understand the
controlled Bloch equation

Role of the relaxation parameters → feedback classification

Dynamical properties of the singular flow

Final results, work in progress
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Analysis of the singular flow using algebraic-geometric
techniques

B. Bonnard, M. Chyba, A. Jacquemard and J. Marriott, Algebraic
geometric classification of the singular flow in the contrast imaging
problem in nuclear magnetic resonance, Mathematical Control and
Related Fields, V3, N4, (2013).

System q̇ = F (q) + u G (q), |u| ≤ 2π q ∈ R4

Singular control

D = det(F ,G , [G ,F ], [[G ,F ],G ])

D ′ = det(F ,G , [G ,F ], [[G ,F ],F ])

〈p,G 〉 = 〈p, [G ,F ](q)〉 = 0

us = −〈p, [[G ,F ],F ](q)〉
〈p, [[G ,F ],G ](q)〉
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Analysis of the singular flow using algebraic-geometric
techniques

The surface
D : 〈p, [[G ,F ],G ](q)〉 = 〈p,G 〉 = 〈p, [G ,F ](q)〉 = 0

corresponds to points where |us | → +∞ switching

Except if 〈p, [[G ,F ],F ](q)〉 = 0 which corresponds to
D = D ′ = 0.
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Algebraic problem

Compute exactly (with rational coefficients) {D = 0},
{D = 0} ∩ {D ′ = 0}.

Reduction : we restrict to the level set H = 0 (additional Eq.
〈p,F 〉 = 0).
Hence {D = 0} is a dim 3 algebraic variety in R4,
{D = 0} ∩ {D ′ = 0} is a dim 2 algebraic variety in R4.

These algebraic varieties depend upon the physical parameters
of the chemical species.
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Computation and description

Case Deoxygenated blood - Oxygenated blood

Gröbner basis for {D = 0,∇D = 0} leads to a direct
resolution of a dim 0 algebraic variety.

We just restrict to roots in |q| ≤ 1.

Figure: Complex singularities of D = 0
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Computation and description

Analysis of the set {D = 0} ∩ {D ′ = 0} :
Computation of a Gröbner basis, and then factorization of
some of its polynomials, One gets an algebraic description of
the two dim 2 components ξ1, ξ2, intersecting the Bloch ball.
Two coordinates variables are explicitly expressed in terms of
rational fractions involving the two others.

formulæ

ξ1 =

{
y1 = 2

5
r1(y2,z2)
p1(y2,z2)

z1 = r2(y2,z2)
p1(y2,z2)

and

ξ2 =

 y1 =
12(34z2+37)(1940y2

2−219z2
2−264z2)y2

p2(y2,z2)

z1 =
5(51z2

2−340y2
2 +60z2)(1940y2

2−219z2
2−264z2)

p2(y2,z2)

with p1, p2, r1, r2 polynomials.
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Computation of the non-transversal intersection

Analysis of the points Ξ where {D = 0} and {D ′ = 0} are not
transversal.
Computation of sets of Gröbner bases, using factorization and
elimination of redundant components.
No direct parameterization, but characterization of the
projections on each spin space.
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Non-transversal intersection, projections of Ξ

Figure: Projections on (y1, z1) (left) and (y2, z2) (right) of the singular
line Ξ
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