On the Hardy-Sobolev operator with a boundary singularity

Nassif Ghoussoub, UBC (Joint work with Frédéric Robert (Université de Lorraine)

The Fields Institute, November 10, 2014

Given a smooth compact Riemannian manifold (M, g) of dimension $n \ge 3$, find a metric conformal to g with constant scalar curvature. It amounts to finding a positive solution for

$$-\frac{4(n-1)}{n-2}\Delta u + \lambda u = u^{2^*-1} \text{ on } M,$$
 (1)

or to minimize

$$\mu(M) = \inf \left\{ \frac{\int_{M} (\frac{4(n-1)}{n-2} |\nabla u|^2 + \lambda |u|^2) \, dV_g}{\left(\int_{M} |u|^{2^*} \, dV_g\right)^{\frac{2}{2^*}}}; u \in D^{1,2}(M), u \neq 0 \right\},$$

where λ is the scalar curvature with respect to g.

(Yamabe, Trudinger, Aubin). The Yamabe problem can be solved on any compact manifold M with $\mu(M) < \mu(\mathbb{S}^n)$, where \mathbb{S}^n is the sphere with its standard metric.

(Aubin). If *M* has dimension $n \ge 6$ and is not locally conformally flat then $\mu(M) < \mu(\mathbb{S}^n)$.

(Schoen). If M has dimension 3, 4, or 5, or if M is locally conformally flat, then $\mu(M) < \mu(\mathbb{S}^n)$ unless M is conformal to the standard sphere.

Given a smooth compact Riemannian manifold (M, g) of dimension $n \ge 3$, find a metric conformal to g with constant scalar curvature. It amounts to finding a positive solution for

$$-\frac{4(n-1)}{n-2}\Delta u + \lambda u = u^{2^*-1} \text{ on } M,$$
 (1)

or to minimize

$$\mu(M) = \inf \left\{ \frac{\int_{M} (\frac{4(n-1)}{n-2} |\nabla u|^2 + \lambda |u|^2) \, dV_g}{\left(\int_{M} |u|^{2^*} \, dV_g\right)^{\frac{2}{2^*}}}; u \in D^{1,2}(M), u \neq 0 \right\},$$

where λ is the scalar curvature with respect to g.

(Yamabe, Trudinger, Aubin). The Yamabe problem can be solved on any compact manifold M with $\mu(M) < \mu(\mathbb{S}^n)$, where \mathbb{S}^n is the sphere with its standard metric.

(Aubin). If *M* has dimension $n \ge 6$ and is not locally conformally flat then $\mu(M) < \mu(\mathbb{S}^n)$.

(Schoen). If M has dimension 3, 4, or 5, or if M is locally conformally flat, then $\mu(M) < \mu(\mathbb{S}^n)$ unless M is conformal to the standard sphere.

What happens if $M \subset \mathbb{R}^n$. Can one still solve (1) with Dirichlet boundary conditions–say?

Now assume $\Omega \subset \mathbb{R}^n$. Then,

$$-\Delta u + \lambda u = u^{2^* - 1} \quad \text{on } \Omega, \tag{2}$$

has no solution if $\lambda \geq 0$.

The best constant in the Sobolev inequality

$$\mu(\Omega) = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^2 dx}{\left(\int_{\Omega} |u|^{2^*} dx\right)^{\frac{2}{2^*}}}; u \in D^{1,2}(\Omega), u \neq 0 \right\},$$

is never attained unless Ω is essentially \mathbb{R}^n . Actually, $\mu(\Omega) = \mu(\mathbb{R}^n)$ for every $\Omega \subset \mathbb{R}^n$. Three ways to break the homogeneity of the problem:

- 1. Brezis-Nirenberg (1983) $-\Delta u + \lambda u = u^{2^*-1}$ has a positive solution if $-\lambda_1(\Omega) < \lambda < 0$ and $n \ge 4$. Dimension n = 3 is different!: Druet.
- Bahri-Coron (1987) Δu = u^{2*-1} has a positive solution, if Ω is an annular domain (or if H_d(Ω, Z₂) ≠ 0 for some d > 0, e.g., Ω non-contractible in R³.)
- 3. Ghoussoub-Kang (2003) Singularize the problem!!!

Hardy's inequality:

$$\frac{(n-2)^2}{4}\int_{\mathbb{R}^n}\frac{u^2}{|x|^2}\,dx\leq \int_{\mathbb{R}^n}|\nabla u|^2\,dx\quad \text{ for all } u\in C^\infty_c(\mathbb{R}^n).$$

Sobolev inequality:

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{2n}{n-2}} dx\right)^{\frac{n-2}{n}} \leq C(n) \int_{\mathbb{R}^n} |\nabla u|^2 dx \quad \text{for all } u \in C^\infty_c(\mathbb{R}^n).$$

Hardy-Sobolev inequality: For $s \in [0,2]$, $2^*(s) := \frac{2(n-s)}{n-2}$.

$$\left(\int_{\mathbb{R}^n} \frac{|u|^{2^{\star}(s)}}{|x|^s} dx\right)^{\frac{2}{2^{\star}(s)}} \leq C(n,s) \int_{\mathbb{R}^n} |\nabla u|^2 dx \quad \text{ for all } u \in C^{\infty}_c(\mathbb{R}^n).$$

Caffarelli-Kohn-Nirenberg: For $a \le b \le b + 1$, $a < \frac{n-2}{2}$, and $p := \frac{2n}{n-2+2(b-a)}$,

$$\left(\int_{\mathbb{R}^n} |x|^{-bp} |u|^p \, dx\right)^{\frac{2}{p}} \leq C(a,b,n) \int_{\mathbb{R}^n} |x|^{-2a} |\nabla u|^2 \, dx \quad \text{ for all } u \in C^\infty_c(\mathbb{R}^n).$$

Writing $v(x) := |x|^{-a}u(x)$, this rewrites with $\gamma := a(n-2-a) < \frac{(n-2)^2}{4}$ as:

$$\left(\int_{\mathbb{R}^n} \frac{|u|^{2^*(s)}}{|x|^s} dx\right)^{\frac{2}{2^*(s)}} \leq C(n,\gamma,s) \int_{\mathbb{R}^n} \left(|\nabla u|^2 - \gamma \frac{u^2}{|x|^2}\right) dx \quad \text{for } u \in C_c^\infty(\mathbb{R}^n).$$

Define for any $\Omega \subset \mathbb{R}^n$, the best constant

$$\mu_{\gamma,s}(\Omega) := \inf_{u \in D^{1,2}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \left(|\nabla u|^2 - \gamma \frac{u^2}{|x|^2} \right) dx}{\left(\int_{\Omega} \frac{|u|^{2^{\star}(s)}}{|x|^s} dx \right)^{\frac{2}{2^{\star}(s)}}},$$

Again, if the singularity $0 \in \Omega$, then for $0 \le s < 2$ and $\gamma < (n-2)^2/4$,

$$\mu_{\gamma,s}(\Omega)=\mu_{\gamma,s}(\mathbb{R}^n).$$

The infimum is never attained unless $\Omega = \mathbb{R}^n$.

What about domains such that $0 \in \partial \Omega$?

Are there extremals for $\mu_{\gamma,s}(\Omega)$? i.e., positive solutions to the Euler-Lagrange equation

э.

• Gh-Robert (2006) If $\gamma = 0$ and s > 0, then there are extremals for all $n \ge 3$, provided the mean curvature of $\partial \Omega$ at 0 is negative. Hence, there are positive solutions for

$$\begin{cases}
-\Delta u = \frac{u^{2^{\star}(s)-1}}{|x|^{s}} & \text{on } \Omega \\
u > 0 & \text{on } \Omega \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$
(4)

э

Note: There is no small-dimension phenomenon!

• Gh-Robert (2006) If $\gamma = 0$ and s > 0, then there are extremals for all $n \ge 3$, provided the mean curvature of $\partial \Omega$ at 0 is negative. Hence, there are positive solutions for

$$\begin{cases}
-\Delta u &= \frac{u^{2^{\star}(s)-1}}{|x|^{s}} \quad \text{on } \Omega \\
u &> 0 \quad \text{on } \Omega \\
u &= 0 \quad \text{on } \partial\Omega.
\end{cases}$$
(4)

Note: There is no small-dimension phenomenon!

► Chern-C.S.Lin (2010) If $\gamma < \frac{(n-2)^2}{4}$ and s > 0, then there are extremals for all $n \ge 3$, provided the mean curvature of $\partial\Omega$ at 0 is negative, i.e., there are positive solutions for

$$\begin{cases} -\Delta u - \gamma \frac{u}{|x|^2} &= \frac{u^{2^*(s)-1}}{|x|^s} & \text{ on } \Omega\\ u &> 0 & \text{ on } \Omega\\ u &= 0 & \text{ on } \partial\Omega. \end{cases}$$
(5)

Same for s = 0 provided $n \ge 4$ and $\gamma > 0$.

• Gh-Robert (2006) If $\gamma = 0$ and s > 0, then there are extremals for all $n \ge 3$, provided the mean curvature of $\partial \Omega$ at 0 is negative. Hence, there are positive solutions for

$$\begin{cases}
-\Delta u &= \frac{u^{2^{\star}(s)-1}}{|x|^{s}} \quad \text{on } \Omega \\
u &> 0 \quad \text{on } \Omega \\
u &= 0 \quad \text{on } \partial\Omega.
\end{cases}$$
(4)

Note: There is no small-dimension phenomenon!

► Chern-C.S.Lin (2010) If $\gamma < \frac{(n-2)^2}{4}$ and s > 0, then there are extremals for all $n \ge 3$, provided the mean curvature of $\partial\Omega$ at 0 is negative, i.e., there are positive solutions for

$$\begin{cases} -\Delta u - \gamma \frac{u}{|x|^2} &= \frac{u^{2^*(s)-1}}{|x|^s} & \text{on } \Omega\\ u &> 0 & \text{on } \Omega\\ u &= 0 & \text{on } \partial\Omega. \end{cases}$$
(5)

Same for s = 0 provided $n \ge 4$ and $\gamma > 0$. What happens if:

1.
$$s = 0$$
 and $n = 3$.
2. $\gamma \ge \frac{(n-2)^2}{4}$.

Best constants in Hardy's inequality?

Consider first the best constant in the Hardy inequality

$$\gamma_{\mathcal{H}}(\Omega) := \inf \left\{ \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} \frac{u^2}{|x|^2} dx}; \ u \in D^{1,2}(\Omega) \setminus \{0\} \right\} \ D^{1,2}(\Omega) := \overline{C_c^{\infty}(\Omega)}^{\|\cdot\|} \ , \ \|u\| := \|\nabla u\|_2.$$

Easy to see that if $0 \in \Omega$, then $\gamma_H(\Omega)$ does not depend on the domain $\Omega \subset \mathbb{R}^n$

$$\gamma_H(\Omega) = \gamma_H(\mathbb{R}^n) = \frac{(n-2)^2}{4}.$$

HOWEVER,

Best constants in Hardy's inequality?

Consider first the best constant in the Hardy inequality

$$\gamma_{\mathcal{H}}(\Omega) := \inf \left\{ \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} \frac{u^2}{|x|^2} dx}; \ u \in D^{1,2}(\Omega) \setminus \{0\} \right\} \ D^{1,2}(\Omega) := \overline{C_c^{\infty}(\Omega)}^{\|\cdot\|} \ , \ \|u\| := \|\nabla u\|_2.$$

Easy to see that if $0 \in \Omega$, then $\gamma_H(\Omega)$ does not depend on the domain $\Omega \subset \mathbb{R}^n$

$$\gamma_H(\Omega) = \gamma_H(\mathbb{R}^n) = \frac{(n-2)^2}{4}.$$

HOWEVER, Proposition: For $1 \le k \le n$, we have:

$$\left(\frac{n+2k-2}{2}\right)^2 = \inf_u \frac{\int_{\mathbb{R}^k_+ \times \mathbb{R}^{n-k}} |\nabla u|^2 \, dx}{\int_{\mathbb{R}^k_+ \times \mathbb{R}^{n-k}} \frac{u^2}{|x|^2} \, dx},$$

where the infimum is taken on $u \in D^{1,2}(\mathbb{R}^k_+ \times \mathbb{R}^{n-k}) \setminus \{0\}$ is never achieved. In particular,

$$\gamma_H(\mathbb{R}^n_+)=\frac{n^2}{4}.$$

Hardy best constants when $0 \in \partial \Omega$

Unlike the case when 0 is in the interior of a domain, we have the following

Proposition: If $0 \in \partial \Omega$, then

1.
$$\frac{(n-2)^2}{4} < \gamma_H(\Omega) \le \frac{n^2}{4}$$
.
2. $\gamma_H(\Omega) = \frac{n^2}{4}$ for every Ω such that $0 \in \partial \Omega$ and $\Omega \subset \mathbb{R}^n_+$.
3. $\inf\{\gamma_H(\Omega); 0 \in \partial \Omega\} = \frac{(n-2)^2}{4}$.

4. For every $\epsilon > 0$, there exists a smooth domain Ω_{ϵ} such that $0 \in \partial \Omega_{\epsilon}$, $\mathbb{R}^{n}_{+} \subsetneq \Omega_{\epsilon} \subsetneq \mathbb{R}^{n}$ and $\frac{n^{2}}{4} - \epsilon \leq \gamma_{H}(\Omega_{\epsilon}) < \frac{n^{2}}{4}$. Unlike the case when 0 is in the interior of a domain, we have the following

Proposition: If $0 \in \partial \Omega$, then

1.
$$\frac{(n-2)^2}{4} < \gamma_H(\Omega) \le \frac{n^2}{4}$$
.
2. $\gamma_H(\Omega) = \frac{n^2}{4}$ for every Ω such that $0 \in \partial \Omega$ and $\Omega \subset \mathbb{R}^n_+$.
3. $\inf\{\gamma_H(\Omega); 0 \in \partial \Omega\} = \frac{(n-2)^2}{4}$.

4. For every $\epsilon > 0$, there exists a smooth domain Ω_{ϵ} such that $0 \in \partial \Omega_{\epsilon}$, $\mathbb{R}^{n}_{+} \subsetneq \Omega_{\epsilon} \subsetneq \mathbb{R}^{n}$ and $\frac{n^{2}}{4} - \epsilon \leq \gamma_{H}(\Omega_{\epsilon}) < \frac{n^{2}}{4}$.

.... and a Caffarelli-Kohn-Nirenberg inequality on \mathbb{R}^{n}_{+} :

There exists C := C(a, b, n) > 0 such that for $u \in C_c^{\infty}(\mathbb{R}^k_+ \times \mathbb{R}^{n-k})$,

$$\left(\int_{\mathbb{R}^k_+\times\mathbb{R}^{n-k}}|x|^{-bq}\left(\Pi^k_{i=1}x_i\right)^q|u|^q\right)^{\frac{2}{q}}\leq C\int_{\mathbb{R}^k_+\times\mathbb{R}^{n-k}}\left(\Pi^k_{i=1}x_i\right)^2|x|^{-2s}|\nabla u|^2dx,$$

where

$$-\infty < a < \frac{n-2+2k}{2}, \quad 0 \le b-a \le 1, \quad q = \frac{2n}{n-2+2(b-a)}.$$
 (6)

Back to the best constant

More importantly, we then have for any $\gamma < n^2/4$, $0 \le s \le 2$, $2^*(s) := \frac{2(n-s)}{n-2}$,

$$\left(\int_{\mathbb{R}^n_+} \frac{|u|^{2^*(s)}}{|x|^s} dx\right)^{\frac{2^*}{2^*(s)}} \leq C_{n,\gamma,s}' \int_{\mathbb{R}^n_+} \left(|\nabla u|^2 - \gamma \frac{u^2}{|x|^2}\right) dx \quad \text{for } u \in C^\infty_c(\mathbb{R}^n).$$

For $\Omega \subset \mathbb{R}^n$, the best constant $\mu_{\gamma,s}(\Omega) := \inf\{I_{s,\gamma}(\Omega); u \in C_c^{\infty}(\Omega) \setminus \{0\}\}$, where

$$I_{s,\gamma}(u) := \frac{\int_{\Omega} \left(|\nabla u|^2 - \gamma \frac{u^2}{|x|^2} \right) dx}{\left(\int_{\Omega} \frac{|u|^{2^{\star}(s)}}{|x|^s} dx \right)^{\frac{2^{\star}}{2^{\star}(s)}}},$$

Again, for any Ω with $0 \in \Omega$, we have for $0 \le s < 2$ and $\gamma < \gamma_H(\Omega) = (n-2)^2/4$

 $\mu_{\gamma,s}(\Omega)=\mu_{\gamma,s}(\mathbb{R}^n).$

The infimum is never attained unless $\Omega = \mathbb{R}^n$.

What about domains such that $0 \in \partial \Omega$?

We already know that

- $\mu_{\gamma,s}(\Omega) > 0$, whenever $0 \le s < 2$ and $\gamma < \gamma_H(\Omega) < n^2/4$.
- ► $\mu_{\gamma,s}(\Omega) < \mu_{\gamma,s}(\mathbb{R}^n_+)$, hence is attained if s > 0, $n \ge 3$ and $\gamma < \frac{(n-2)^2}{4}$.

What happens in the remaining cases? that is when

$$\gamma \in \left[rac{(n-2)^2}{4}, \gamma_H(\Omega)
ight) \subset \left[rac{(n-2)^2}{4}, rac{n^2}{4}
ight)$$

Theorem

Let Ω be a bounded smooth domain of \mathbb{R}^n $(n \geq 3)$ such that $0 \in \partial \Omega$. In particular $\frac{(n-2)^2}{4} < \gamma_H(\Omega) \leq \frac{n^2}{4}$. Let $0 \leq s < 2$.

- 1. If $\gamma_H(\Omega) \leq \gamma < \frac{n^2}{4}$, then there are extremals for $\mu_{\gamma,s}(\Omega)$ for every $s \in [0,2)$ and any $n \geq 3$.
- 2. If $\gamma < \gamma_H(\Omega)$ and s > 0, then
 - $\gamma \leq \frac{n^2-1}{4}$ and the mean curvature of $\partial\Omega$ at 0 is negative. • $\gamma > \frac{n^2-1}{4}$ and the Hardy b-mass $m_{\gamma}(\Omega)$ is positive.

Table: Singular Sobolev-Critical term: s > 0

Hardy term	Dimension	Geometric condition	Extremal
$-\infty < \gamma \le \frac{n^2 - 1}{4}$	$n \ge 3$	Negative mean curvature at 0	Yes
$\frac{n^2-1}{4} < \gamma < \frac{n^2}{4}$	$n \ge 3$	Positive boundary-mass	Yes

Table: Non-singular Sobolev-Critical term: s = 0

Hardy term	Dim.	Geometric condition	Extremal
$0 < \gamma \le \frac{n^2 - 1}{4}$	n = 3	Negative mean curvature at 0 & Positive internal mass	Yes
	$n \ge 4$	Negative mean curvature at 0	Yes
$\frac{n^2 - 1}{4} < \gamma < \frac{n^2}{4}$	n = 3	Positive boundary-mass & Positive internal mass	Yes
	$n \ge 4$	Positive boundary mass	Yes
$\gamma \leq 0$	$n \ge 3$	_	No

Theorem Let Ω be a bounded smooth domain of \mathbb{R}^3 such that $0 \in \partial \Omega$. In particular $\frac{1}{4} < \gamma_H(\Omega) \leq \frac{9}{4}$.

- If $\gamma_H(\Omega) \leq \gamma < \frac{9}{4}$, then there are extremals for $\mu_{\gamma,0}(\Omega)$.
- ▶ If $0 < \gamma < \gamma_H(\Omega)$, and if there exists $x_0 \in \Omega$ such that $R_\gamma(\Omega, x_0) > 0$, then there are extremals for $\mu_{\gamma,0}(\Omega)$, under either one of the following conditions:
 - 1. $\gamma \leq$ 2 and the mean curvature of $\partial \Omega$ at 0 is negative.
 - 2. $\gamma > 2$ and the mass $m_{\gamma}(\Omega)$ is positive.

Standard scheme but the challenge is in the implementation

Standard fact: (Dating back to the Yamabe problem (Trudinger, Aubin)

IF $\mu_{\gamma,s}(\Omega) < \mu_{\gamma,s}(\mathbb{R}^n_+)$, then there are extremals for $\mu_{\gamma,s}(\Omega)$.

Standard scheme but the challenge is in the implementation

Standard fact: (Dating back to the Yamabe problem (Trudinger, Aubin)

IF $\mu_{\gamma,s}(\Omega) < \mu_{\gamma,s}(\mathbb{R}^n_+)$, then there are extremals for $\mu_{\gamma,s}(\Omega)$.

Another standard fact: Use the nonnegative extremal $U \in D^{1,2}(\mathbb{R}^n_+)$ for $\mu_{\gamma,s}(\mathbb{R}^n_+)$ (if it exists) to build test functions. Besides existence, one needs information on the profile i.e. behavior at 0 and at infinity.

Standard scheme but the challenge is in the implementation

Standard fact: (Dating back to the Yamabe problem (Trudinger, Aubin)

IF $\mu_{\gamma,s}(\Omega) < \mu_{\gamma,s}(\mathbb{R}^n_+)$, then there are extremals for $\mu_{\gamma,s}(\Omega)$.

Another standard fact: Use the nonnegative extremal $U \in D^{1,2}(\mathbb{R}^n_+)$ for $\mu_{\gamma,s}(\mathbb{R}^n_+)$ (if it exists) to build test functions. Besides existence, one needs information on the profile i.e. behavior at 0 and at infinity.

Proposition (Existence on \mathbb{R}^n_+): Fix $\gamma < \frac{n^2}{4}$ and $s \in [0, 2)$ with $n \ge 3$. Then, 1. If either $\{s > 0\}$ or $\{s = 0, \gamma > 0$ and $n \ge 4\}$, then $\mu_{\gamma,s}(\mathbb{R}^n_+)$ is attained. 2. If $\{s = 0 \text{ and } \gamma \le 0\}$, there are no extremals for $\mu_{\gamma,0}(\mathbb{R}^n_+)$. 3. The only unknown situation on \mathbb{R}^n_+ is when $\{s = 0, n = 3 \text{ and } \gamma > 0\}$, BUT:

If
$$\mu_{\gamma,0}(\mathbb{R}^n_+)$$
 is not attained, then $\mu_{\gamma,0}(\mathbb{R}^n_+) = \inf_{u \in D^{1,2}(\mathbb{R}^n) \setminus \{0\}} \frac{\int_{\mathbb{R}^n} |u|^2 dx}{\left(\int_{\mathbb{R}^n} |u|^{2^*} dx\right)^{\frac{2^*}{2^*}}}.$

Theorem (Symmetry on \mathbb{R}^n_+): If $u \in D^{1,2}(\mathbb{R}^n_+)$ is an extremal for $\mu_{\gamma,0}(\mathbb{R}^n_+)$, then $u \circ \sigma = u$ for all isometry of \mathbb{R}^n such that $\sigma(\mathbb{R}^n_+) = \mathbb{R}^n_+$. In particular, there exists $v \in C^{\infty}((0, +\infty) \times \mathbb{R})$ such that for all $x_1 > 0$ and all $x' \in \mathbb{R}^{n-1}$, we have that $u(x_1, x') = v(x_1, |x'|)$.

Question (Behavior at 0 and ∞)

The three main cases

Define $u_{\epsilon}(x) := \eta(x) \left(\epsilon^{-\frac{n-2}{2}} U(\epsilon^{-1} \cdot) \right) \circ \varphi^{-1}(x)$, where η is a cut-off around 0 and φ is a chart mapping locally \mathbb{R}^{n}_{+} on Ω .

1. If $\gamma < \frac{n^2 - 1}{4}$, then $\int_{\partial \mathbb{R}^n_+} |x|^2 |\nabla U|^2 dx < +\infty$, then the test functions u_{ϵ} work: $I_{s,\gamma}(u_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}^n_+) + C_{n,s,\gamma} \cdot H(0) \cdot \epsilon + o(\epsilon)$

where H(0) is the mean curvature of $\partial \Omega$ at 0.

The three main cases

Define $u_{\epsilon}(x) := \eta(x) \left(\epsilon^{-\frac{n-2}{2}} U(\epsilon^{-1} \cdot) \right) \circ \varphi^{-1}(x)$, where η is a cut-off around 0 and φ is a chart mapping locally \mathbb{R}^{n}_{+} on Ω .

1. If
$$\gamma < \frac{n^2-1}{4}$$
, then $\int_{\partial \mathbb{R}^n_+} |x|^2 |\nabla U|^2 dx < +\infty$, then the test functions u_{ϵ} work:
$$\boxed{I_{s,\gamma}(u_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}^n_+) + C_{n,s,\gamma} \cdot H(0) \cdot \epsilon + o(\epsilon)}$$

where H(0) is the mean curvature of $\partial \Omega$ at 0.

2. For $\gamma = \frac{n^2 - 1}{4}$ one needs a finer analysis of the linear operator $L_{\gamma} := -\Delta - \frac{\gamma}{|x|^2}$ to establish that U behaves exactly like $x_1|x|^{-\alpha_+}$ at infinity.

$$I_{s,\gamma}(u_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}^n_+) + C_{n,s,\gamma} \cdot H(0) \cdot \epsilon \ln(1/\epsilon) + o(\epsilon \ln(1/\epsilon))$$

The three main cases

Define $u_{\epsilon}(x) := \eta(x) \left(e^{-\frac{n-2}{2}} U(e^{-1} \cdot) \right) \circ \varphi^{-1}(x)$, where η is a cut-off around 0 and φ is a chart mapping locally \mathbb{R}^{n}_{+} on Ω .

1. If
$$\gamma < \frac{n^2 - 1}{4}$$
, then $\int_{\partial \mathbb{R}^n_+} |x|^2 |\nabla U|^2 dx < +\infty$, then the test functions u_{ϵ} works
$$\boxed{l_{s,\gamma}(u_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}^n_+) + C_{n,s,\gamma} \cdot H(0) \cdot \epsilon + o(\epsilon)}$$

where H(0) is the mean curvature of $\partial \Omega$ at 0.

2. For $\gamma = \frac{n^2 - 1}{4}$ one needs a finer analysis of the linear operator $L_{\gamma} := -\Delta - \frac{\gamma}{|x|^2}$ to establish that U behaves exactly like $x_1|x|^{-\alpha_+}$ at infinity.

$$I_{s,\gamma}(u_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}^n_+) + C_{n,s,\gamma} \cdot H(0) \cdot \epsilon \ln(1/\epsilon) + o(\epsilon \ln(1/\epsilon))$$

3. For $\frac{n^2-1}{4} < \gamma < \frac{n^2}{4},$ then one constructs global profiles $v_{\epsilon},$

$$v_{\epsilon}(x) := u_{\epsilon}(x) + \epsilon^{\frac{\alpha_{+} - \alpha_{-}}{2}} \beta(x), \quad \text{where}$$

$$\beta(x) = m_{\gamma}(\Omega) \frac{d(x,\partial\Omega)}{|x|^{\alpha_{-}}} + o\left(\frac{d(x,\partial\Omega)}{|x|^{\alpha_{-}}}\right) \quad \text{as } x \to 0.$$

in such a way that

$$I_{s,\gamma}(v_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}^{n}_{+}) - C_{n,s,\gamma} \cdot m_{\gamma}(\Omega) \cdot \epsilon^{\alpha_{+}-\alpha_{-}} + o(\epsilon^{\alpha_{+}-\alpha_{-}})$$

where $m_{\gamma}(\Omega)$ is the Hardy-singular boundary mass of Ω .

On \mathbb{R}^n_+ , we define $u_\alpha(x) := x_1 |x|^{-\alpha}$ for $\alpha \in \mathbb{R}$. The first remark is that

$$\Delta u_{\alpha} - \frac{\gamma}{|\mathsf{x}|^2} u_{\alpha} = 0 \text{ in } \mathbb{R}^n_+ \iff \{\alpha = \alpha_-(\gamma) \text{ or } \alpha = \alpha_+(\gamma)\}$$

where

$$\alpha_-(\gamma) := rac{n}{2} - \sqrt{rac{n^2}{4} - \gamma} \text{ and } \alpha_+(\gamma) := rac{n}{2} + \sqrt{rac{n^2}{4} - \gamma}$$

Note: $\alpha_{-} < \frac{n}{2} < \alpha_{+}$, which points to the difference between the two canonical solutions, one is variational namely $x \mapsto x_1 |x|^{-\alpha_{-}(\gamma)}$ is locally in $D^{1,2}(\mathbb{R}^n_+)$, and the "large one" $x \mapsto x_1 |x|^{-\alpha_{+}(\gamma)}$ is not.

Note: the analogy with the case of harmonic functions on \mathbb{R}^n (i.e., solutions of $\Delta u = 0$ on $\mathbb{R}^n \setminus \{0\}$):

$$\Delta |x|^{-\beta} = 0 \text{ in } \mathbb{R}^n \setminus \{0\} \iff \{\beta = 0 \text{ or } \beta = n-2\}.$$

All non-negative solutions of $L_{\gamma} u = 0$ on \mathbb{R}^n_+ turned out to be a linear combination of the two basic ones. Indeed, we prove the following:

Theorem: Let $u \in C^2(\overline{\mathbb{R}^n_+} \setminus \{0\})$ be a nonnegative function such that

$$-\Delta u - \frac{\gamma}{|x|^2}u = 0 \text{ in } \mathbb{R}^n_+ \text{ ; } u = 0 \text{ on } \partial \mathbb{R}^n_+.$$

Then there exist $\lambda_{-}, \lambda_{+} \geq 0$ such that

$$u(x) = \lambda_{-}x_{1}|x|^{-\alpha_{-}} + \lambda_{+}x_{1}|x|^{-\alpha_{+}}$$
 for all $x \in \mathbb{R}_{+}^{n}$.

Remark: We eventually show that $x \mapsto d(x, \partial \Omega)|x|^{-\alpha_{-}(\gamma)}$ is essentially the profile at 0 of any variational solution –positive or not– of equations of the form $L_{\gamma}u = f(x, u)$, as long as the nonlinearity f is dominated by $C(|v| + \frac{|v|^{2^{*}(s)}}{|x|^{s}})$.

Regularity and Hopf-type lemma

Theorem: Consider $u \in D^{1,2}(\Omega)$ that is locally (around 0) a solution to

$$-\Delta u - \frac{\gamma + O(|x|^{\tau})}{|x|^2}u = f(x, u)$$

where $|f(x,u)| \leq C|u| \left(1 + \frac{|u|^{2^{\star}(s)-2}}{|x|^s}\right)$, $\tau > 0$. Then there exists $K \in \mathbb{R}$ such that

$$u(x) = K \frac{d(x, \partial \Omega)}{|x|^{\alpha_{-}}} + o\left(\frac{d(x, \partial \Omega)}{|x|^{\alpha_{-}}}\right) \text{ when } x \to 0.$$

Moreover, if $u \ge 0$, $u \not\equiv 0$, then K > 0.

Remark 1: when $\gamma = 0$, we have $\alpha_{-} = 0$ and this is exactly Hopf's lemma $(\mathcal{K} = -\partial_{\nu} u(0) > 0)$.

Remark 2: Unlike the case when $L_{\gamma} = L_0 = -\Delta$) or when the singularity 0 is in the interior, the standard DeGiorgi-Nash-Moser iterative scheme is not sufficient to obtain the required regularity. It only yields that $u \in L^p$ for all $p < p_0 < \frac{n}{\alpha_-(\gamma)-1}$.

Remark 3: However, the improved order p_0 is enough to allow for the inclusion of the nonlinearity f(x, u) in the linear term, hence reducing the analysis to when $f(x, u) \equiv 0$. We get the conclusion by constructing super- and sub- solutions to the linear equation behaving like the canonical solutions.

Profile of the limiting solution

Theorem: Assume $\gamma < \frac{n^2}{4}$ and let $u \in D^{1,2}(\mathbb{R}^n_+)$, $u \ge 0$, $u \not\equiv 0$ be a weak solution to

$$-\Delta u - \frac{\gamma}{|x|^2} u = \frac{u^{2^*(s)-1}}{|x|^s} \text{ in } \mathbb{R}^n_+.$$

Then, there exist $K_1, K_2 > 0$ such that

$$u(x) \sim_{x \to 0} \kappa_1 \frac{x_1}{|x|^{\alpha_-(\gamma)}}$$
 and $u(x) \sim_{|x| \to +\infty} \kappa_2 \frac{x_1}{|x|^{\alpha_+(\gamma)}}$.

Remark: This description of the profile of variational solutions allows to construct sharper test functions and to prove existence of extremals up to $\gamma = \frac{n^2 - 1}{4}$. Indeed, the estimates

$$u(x) \leq Cx_1|x|^{-\alpha_+(\gamma)}$$
 and $|\nabla u(x)| \leq C|x|^{-\alpha_+(\gamma)}$ for all $x \in \mathbb{R}^n_+$. (7)

and the fact that

$$\gamma < rac{n^2-1}{4} \Leftrightarrow lpha_+(\gamma) - lpha_-(\gamma) > 1$$

yield that if $\gamma < \frac{n^2-1}{4}$, then $|x'|^2 |\partial_1 u|^2 = O(|x'|^{2-2\alpha_+(\gamma)})$ as $|x'| \to +\infty$ on $\partial \mathbb{R}^n_+ = \mathbb{R}^{n-1}$, from which we could deduce that $x' \mapsto |x'|^2 |\partial_1 u(x')|^2$ is in $L^1(\partial \mathbb{R}^n_+)$. This estimate does not hold when $\gamma \geq \frac{n^2-1}{4}$.

Classification of positive singular solutions

To deal with the remaining cases for γ , we need the following result which describes the general profile of any positive solution of $L_{\gamma}u = a(x)u$, albeit variational or not.

Theorem: Let $u \in C^2(\overline{\Omega} \cap B_{\delta}(0) \setminus \{0\})$ be a **positive** solution to

$$\Delta u - rac{\gamma}{|x|^2} u = 0 ext{ in } \Omega \cap B_{\delta}(0) \setminus \{0\}; \quad u = 0 ext{ on } (\partial \Omega) \cap B_{\delta}(0).$$

Then, either *u* behaves like $d(\cdot, \partial \Omega)|x|^{-\alpha_{-}(\gamma)}$ or like $d(\cdot, \partial \Omega)|x|^{-\alpha_{+}(\gamma)}$.

Classification of positive singular solutions

To deal with the remaining cases for γ , we need the following result which describes the general profile of any positive solution of $L_{\gamma}u = a(x)u$, albeit variational or not.

Theorem: Let $u \in C^2(\overline{\Omega} \cap B_{\delta}(0) \setminus \{0\})$ be a **positive** solution to

$$\Delta u - rac{\gamma}{|\mathsf{x}|^2} u = 0 ext{ in } \Omega \cap B_\delta(0) \setminus \{0\}; \quad u = 0 ext{ on } (\partial \Omega) \cap B_\delta(0).$$

Then, either *u* behaves like $d(\cdot, \partial \Omega)|x|^{-\alpha_{-}(\gamma)}$ or like $d(\cdot, \partial \Omega)|x|^{-\alpha_{+}(\gamma)}$.

A Harnack inequality: Let Ω be a smooth bounded domain of \mathbb{R}^n , $a \in L^{\infty}(\Omega)$ and U an open subset of \mathbb{R}^n . Consider $u \in C^2(U \cap \overline{\Omega})$ to be a solution of

$$\begin{cases} -\Delta_g u + au = 0 & \text{in } U \cap \Omega \\ u \ge 0 & \text{in } U \cap \Omega \\ u = 0 & \text{on } U \cap \partial\Omega, \end{cases}$$

where g is a smooth metric on U. If $U' \subset \subset U$ is such that $U' \cap \Omega$ is connected, then there exists C > 0 depending only on $\Omega, U', ||a||_{\infty}$ and g such that

$$\frac{u(x)}{d(x,\partial\Omega)} \le C \frac{u(y)}{d(y,\partial\Omega)} \text{ for all } x, y \in U' \cap \Omega.$$
(8)

- Sub- super-solutions of the linear equations that behave like the two models (one needs to compensate the mean curvature).
- A notion of distributional solutions that distinguish the variational and the non-variational solutions.

What about the case $\gamma > \frac{n^2 - 1}{4}$?

This involves a notion of mass in the spirit of Schoen-Yau:

Proposition: Fix $\frac{n^2-1}{4} < \gamma < \gamma_H(\Omega)$. Then, up to a positive multiplicative constant, $\exists ! G \in C^2(\overline{\Omega} \setminus \{0\})$ such that

$$\left\{ \begin{array}{cc} \Delta G - \frac{\gamma}{|\mathsf{x}|^2} G = 0 & \text{ in } \Omega \\ G > 0 & \text{ in } \Omega \\ G = 0 & \text{ on } \partial \Omega \setminus \{0\} \end{array} \right\}$$

Moreover, there exists $C_1, C_2 \in \mathbb{R}$, $C_1 > 0$, such that

$$G(x) = C_1 \frac{d(x, \partial \Omega)}{|x|^{\alpha_+}} + C_2 \frac{d(x, \partial \Omega)}{|x|^{\alpha_-}} + o\left(\frac{d(x, \partial \Omega)}{|x|^{\alpha_-}}\right)$$

when $x \to 0$. We define the mass as

$$m_{\gamma}(\Omega) := \frac{C_2}{C_1} \in \mathbb{R}.$$

- 1. The map $\Omega \to m_{\gamma}(\Omega)$ is a monotone increasing function on the class of domains having zero on their boundary, once ordered by inclusion.
- 2. $m_{\gamma}(\mathbb{R}^{n}_{+}) = 0$ for any $\frac{n^{2}-1}{4} < \gamma < \frac{n^{2}}{4}$, and therefore the mass of any one of its subsets having zero on its boundary is non-positive. In particular, $m_{\gamma}(\Omega) < 0$ whenever Ω is convex and $0 \in \partial\Omega$.
- 3. On the other hand, we have examples of bounded domains Ω in \mathbb{R}^n with $0 \in \partial \Omega$ and with positive mass $m_{\gamma}(\Omega) > 0$.
- 4. We have examples of domains with positive/negative mass with any local behavior at 0.

In other words, the sign of the Hardy b-mass is totally independent of the local properties of $\partial\Omega$ around 0.

The remaining case, i.e., n=3 and s=0 and $\gamma \in (0, \frac{n^2}{4})$

In this situation, there may or may not be extremals for $\mu_{\gamma,0}(\mathbb{R}^n_+)$.

- 1. If they do exist, one can argue as before -using the same test functions- to get:
 - Either $\gamma \leq \frac{n^2-1}{4}$ and the mean curvature of $\partial\Omega$ at 0 is negative
 - Or $\gamma > \frac{n^2-1}{4}$ and the mass $m_{\gamma}(\Omega)$ is positive.
- 2. If no extremal exist for $\mu_{\gamma,0}(\mathbb{R}^n_+)$, then $\mu_{\gamma,0}(\mathbb{R}^n_+) = \mu_{0,0}(\mathbb{R}^n_+)$, the best constant in the Sobolev inequality. We are back to the case of the Yamabe problem with no boundary singularity.

One then resorts to a more standard notion of mass $R_{\gamma}(\Omega, x_0)$ associated to an interior point $x_0 \in \Omega$ and construct test-functions in the spirit of Schoen: For $\gamma \in (0, \gamma_H(\Omega))$, any solution *G* of

$$\begin{array}{ll} f & -\Delta G - \frac{\gamma}{|\mathbf{x}|^2} G = 0 & \text{ in } \Omega \setminus \{x_0\} \\ G & > 0 & \text{ in } \Omega \setminus \{x_0\} \\ G = 0 & \text{ on } \partial \Omega \setminus \{0\}, \end{array}$$

is unique up to multiplication by a constant, and that for any $x_0 \in \Omega$, there exists $R_{\gamma}(\Omega, x_0) \in \mathbb{R}$ (independent of G) and $c_G > 0$ such that

$$G(x)=c_G\left(rac{1}{|x-x_0|^{n-2}}+R_\gamma(\Omega,x_0)
ight)+o(1) \quad ext{ as } x o x_0.$$

The quantity $R_{\gamma}(\Omega, x_0)$ is well defined.

Table: The critical cases: s = 0

Hardy term	Dim.	Geometric condition	Extremal
$0 < \gamma \le \frac{n^2 - 1}{4}$	n=3	Negative mean curvature at 0 & Positive internal mass	Yes
	$n \ge 4$	Negative mean curvature at 0	Yes
$\frac{n^2-1}{4} < \gamma < \frac{n^2}{4}$	n=3	Positive boundary-mass & Positive internal mass	Yes
	$n \ge 4$	Positive boundary mass	Yes
$\gamma \leq 0$	$n \ge 3$	-	No

표 ▶ - 표