On the Hardy-Sobolev operator with a boundary singularity

Nassif Ghoussoub, UBC (Joint work with Frédéric Robert (Université de Lorraine)

The Fields Institute, November 10, 2014

Nassif Ghoussoub, UBC (Joint work with Frédéric Robert (Université de Lo [On the Hardy-Sobolev operator with a boundary singularity](#page-31-0)

Given a smooth compact Riemannian manifold (M, g) of dimension $n > 3$, find a metric conformal to g with constant scalar curvature. It amounts to finding a positive solution for

$$
-\frac{4(n-1)}{n-2}\Delta u + \lambda u = u^{2^{*}-1} \quad \text{on M},
$$
 (1)

つへへ

or to minimize

$$
\mu(M)=\inf\left\{\frac{\int_M(\frac{4(n-1)}{n-2}|\nabla u|^2+\lambda|u|^2)\,dV_g}{(\int_M|u|^{2^*}dV_g)^{\frac{2}{2^*}}};\,u\in D^{1,2}(M),\,u\neq 0\right\},\,
$$

where λ is the scalar curvature with respect to g.

(Yamabe, Trudinger, Aubin). The Yamabe problem can be solved on any compact manifold M with $\mu(M) < \mu(\mathbb{S}^n)$, where \mathbb{S}^n is the sphere with its standard metric.

(Aubin). If M has dimension $n > 6$ and is not locally conformally flat then $\mu(M) < \mu(\mathbb{S}^n)$.

(Schoen). If M has dimension 3, 4, or 5, or if M is locally conformally flat, then $\overset{.}{\mu}(M)<\overset{.}{\mu}(\mathbb{S}^n)$ unless M is conformal to the standard sphere.

Given a smooth compact Riemannian manifold (M, g) of dimension $n > 3$, find a metric conformal to g with constant scalar curvature. It amounts to finding a positive solution for

$$
-\frac{4(n-1)}{n-2}\Delta u + \lambda u = u^{2^{*}-1} \quad \text{on M},
$$
 (1)

 Ω

or to minimize

$$
\mu(M)=\inf\left\{\frac{\int_M(\frac{4(n-1)}{n-2}|\nabla u|^2+\lambda|u|^2)\,dV_g}{(\int_M|u|^{2^*}dV_g)^{\frac{2}{2^*}}};\,u\in D^{1,2}(M),\,u\neq 0\right\},\,
$$

where λ is the scalar curvature with respect to g.

(Yamabe, Trudinger, Aubin). The Yamabe problem can be solved on any compact manifold M with $\mu(M) < \mu(\mathbb{S}^n)$, where \mathbb{S}^n is the sphere with its standard metric.

(Aubin). If M has dimension $n > 6$ and is not locally conformally flat then $\mu(M) < \mu(\mathbb{S}^n)$.

(Schoen). If M has dimension 3, 4, or 5, or if M is locally conformally flat, then $\overset{.}{\mu}(M)<\overset{.}{\mu}(\mathbb{S}^n)$ unless M is conformal to the standard sphere.

What happens if $M\subset \mathbb{R}^n.$ Can one still solve (1) with Dirichlet boundary conditions–say?

Now assume $\Omega \subset \mathbb{R}^n$. Then,

$$
-\Delta u + \lambda u = u^{2^{*}-1} \quad \text{on } \Omega,
$$
 (2)

つへへ

has no solution if $\lambda > 0$. The best constant in the Sobolev inequality

$$
\mu(\Omega)=\inf\left\{\frac{\int_{\Omega}|\nabla u|^2\,dx}{\left(\int_{\Omega}|u|^{2^*}\,dx\right)^{\frac{2}{2^*}}};\,u\in D^{1,2}(\Omega),\,u\neq 0\right\},\,
$$

is never attained unless Ω is essentially \R^n . Actually, $\mu(\Omega)=\mu(\R^n)$ for every $\Omega\subset\R^n.$ Three ways to break the homogeneity of the problem:

- 1. Brezis-Nirenberg (1983) $-\Delta u + \lambda u = u^{2^* 1}$ has a positive solution if $-\lambda_1(\Omega) < \lambda < 0$ and $n \ge 4$. Dimension $n = 3$ is different!: Druet.
- 2. Bahri-Coron (1987) $-\Delta u = u^{2^* 1}$ has a positive solution, if Ω is an annular domain (or if $H_d(\Omega,\mathbb{Z}_2)\neq 0$ for some $d>0$, e.g., Ω non-contractible in \mathbb{R}^3 .)
- 3. Ghoussoub-Kang (2003) Singularize the problem!!!

Hardy's inequality:

$$
\frac{(n-2)^2}{4}\int_{\mathbb{R}^n}\frac{u^2}{|x|^2}dx\leq \int_{\mathbb{R}^n}|\nabla u|^2 dx\quad\text{ for all }u\in C_c^\infty(\mathbb{R}^n).
$$

Sobolev inequality:

$$
\left(\int_{\mathbb{R}^n}|u|^{\frac{2n}{n-2}}\,dx\right)^{\frac{n-2}{n}}\leq C(n)\int_{\mathbb{R}^n}|\nabla u|^2\,dx\quad\text{for all }u\in C_c^\infty(\mathbb{R}^n).
$$

Hardy-Sobolev inequality: For $s \in [0,2]$, $2^*(s) := \frac{2(n-s)}{n-2}$.

$$
\left(\int_{\mathbb{R}^n}\frac{|u|^{2^*(s)}}{|x|^s}\,dx\right)^{\frac{2}{2^*(s)}}\leq C(n,s)\int_{\mathbb{R}^n}|\nabla u|^2\,dx\quad\text{ for all }u\in C_c^\infty(\mathbb{R}^n).
$$

Caffarelli-Kohn-Nirenberg: For $a \le b \le b+1$, $a < \frac{n-2}{2}$, and $p := \frac{2n}{n-2+2(b-a)}$,

$$
\left(\int_{\mathbb{R}^n}|x|^{-bp}|u|^p\,dx\right)^{\frac{2}{p}}\leq C(a,b,n)\int_{\mathbb{R}^n}|x|^{-2a}|\nabla u|^2\,dx\quad\text{ for all }u\in C_c^\infty(\mathbb{R}^n).
$$

Writing $v(x):=|x|^{-a}u(x)$, this rewrites with $\gamma:=a(n-2-a)<\frac{(n-2)^2}{4}$ as:

$$
\left[\left(\int_{\mathbb{R}^n}\frac{|u|^{2^*(s)}}{|x|^s}\,dx\right)^{\frac{2}{2^*(s)}}\leq C(n,\gamma,s)\int_{\mathbb{R}^n}\left(|\nabla u|^2-\gamma\frac{u^2}{|x|^2}\right)\,dx\quad\text{for }u\in C_c^\infty(\mathbb{R}^n).
$$

Define for any $\Omega \subset \mathbb{R}^n$, the best constant

$$
\mu_{\gamma,s}(\Omega) := \inf_{u \in D^{1,2}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} \left(|\nabla u|^2 - \gamma \frac{u^2}{|x|^2} \right) dx}{\left(\int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s} dx \right)^{\frac{2}{2^*(s)}}},
$$

Again, if the singularity $0 \in \Omega$, then for $0 \le s < 2$ and $\gamma < (n-2)^2/4$,

$$
\mu_{\gamma,s}(\Omega)=\mu_{\gamma,s}(\mathbb{R}^n).
$$

The infimum is never attained unless $\Omega = \mathbb{R}^n$.

What about domains such that $0 \in \partial\Omega$?

Are there extremals for $\mu_{\gamma,s}(\Omega)$? i.e., positive solutions to the Euler-Lagrange equation

$$
\begin{cases}\n-\Delta u - \gamma \frac{u}{|x|^2} &= \frac{u^{2^*(s)-1}}{|x|^s} & \text{on } \Omega \\
u > 0 & \text{on } \Omega \\
u &= 0 & \text{on } \partial\Omega.\n\end{cases} \tag{3}
$$

► Gh-Robert (2006) If $\gamma = 0$ and $s > 0$, then there are extremals for all $n > 3$, provided the mean curvature of $\partial\Omega$ at 0 is negative. Hence, there are positive solutions for

$$
\begin{cases}\n-\Delta u = \frac{u^{2^{*}(s)-1}}{|x|^{s}} \quad \text{on } \Omega \\
u > 0 \quad \text{on } \Omega \\
u = 0 \quad \text{on } \partial\Omega.\n\end{cases}
$$
\n(4)

 \leftarrow

 $2Q$

∍

Note: There is no small-dimension phenomenon!

► Gh-Robert (2006) If $\gamma = 0$ and $s > 0$, then there are extremals for all $n \geq 3$, provided the mean curvature of $\partial\Omega$ at 0 is negative. Hence, there are positive solutions for

$$
\begin{cases}\n-\Delta u = \frac{u^{2^{*}(s)-1}}{|x|^{s}} \quad \text{on } \Omega \\
u > 0 \quad \text{on } \Omega \\
u = 0 \quad \text{on } \partial\Omega.\n\end{cases}
$$
\n(4)

Note: There is no small-dimension phenomenon!

► Chern-C.S.Lin (2010) If $\gamma < \frac{(n-2)^2}{4}$ and $s > 0$, then there are extremals for all $n \geq 3$, provided the mean curvature of $\partial\Omega$ at 0 is negative, i.e., there are positive $n \geq 3$, solutions for

$$
\begin{cases}\n-\Delta u - \gamma \frac{u}{|x|^2} &= \frac{u^{2^*(s)-1}}{|x|^s} & \text{on } \Omega \\
u > 0 & \text{on } \Omega \\
u &= 0 & \text{on } \partial\Omega.\n\end{cases} \tag{5}
$$

 Ω

Same for $s = 0$ provided $n > 4$ and $\gamma > 0$.

► Gh-Robert (2006) If $\gamma = 0$ and $s > 0$, then there are extremals for all $n \geq 3$, provided the mean curvature of $\partial\Omega$ at 0 is negative. Hence, there are positive solutions for

$$
\begin{cases}\n-\Delta u = \frac{u^{2^{*}(s)-1}}{|x|^{s}} \quad \text{on } \Omega \\
u > 0 \quad \text{on } \Omega \\
u = 0 \quad \text{on } \partial\Omega.\n\end{cases}
$$
\n(4)

Note: There is no small-dimension phenomenon!

► Chern-C.S.Lin (2010) If $\gamma < \frac{(n-2)^2}{4}$ and $s > 0$, then there are extremals for all n > 3, provided the mean curvature of $\partial\Omega$ at 0 is negative, i.e., there are positive solutions for

$$
\begin{cases}\n-\Delta u - \gamma \frac{u}{|x|^2} &= \frac{u^{2^*(s)-1}}{|x|^s} & \text{on } \Omega \\
u > 0 & \text{on } \Omega \\
u &= 0 & \text{on } \partial\Omega.\n\end{cases} \tag{5}
$$

 Ω

Same for $s = 0$ provided $n > 4$ and $\gamma > 0$. What happens if:

1. $s = 0$ and $n = 3$. $(1, 2)$

$$
2. \ \gamma \geq \frac{(n-2)^2}{4}.
$$

Best constants in Hardy's inequality?

Consider first the best constant in the Hardy inequality

$$
\gamma_H(\Omega):=\inf\left\{\frac{\int_\Omega|\nabla u|^2\,dx}{\int_\Omega\frac{u^2}{|x|^2}\,dx};\ u\in D^{1,2}(\Omega)\setminus\{0\}\right\}\ D^{1,2}(\Omega):=\overline{C_c^\infty(\Omega)}^{\|\cdot\|}\ ,\ \|\overline{u}\|:=\|\nabla u\|_2.
$$

Easy to see that if $0 \in \Omega$, then $\gamma_H(\Omega)$ does not depend on the domain $\Omega \subset \mathbb{R}^n$

$$
\gamma_H(\Omega)=\gamma_H(\mathbb{R}^n)=\frac{(n-2)^2}{4}.
$$

HOWEVER,

Best constants in Hardy's inequality?

Consider first the best constant in the Hardy inequality

$$
\gamma_H(\Omega):=\inf\left\{\frac{\int_\Omega|\nabla u|^2\,dx}{\int_\Omega\frac{u^2}{|x|^2}\,dx};\ u\in D^{1,2}(\Omega)\setminus\{0\}\right\}\,\, D^{1,2}(\Omega):=\overline{C_c^\infty(\Omega)}^{\|\cdot\|}\ ,\ \|\overline{u}\|:=\|\nabla u\|_2.
$$

Easy to see that if $0 \in \Omega$, then $\gamma_H(\Omega)$ does not depend on the domain $\Omega \subset \mathbb{R}^n$

$$
\gamma_H(\Omega)=\gamma_H(\mathbb{R}^n)=\frac{(n-2)^2}{4}.
$$

HOWEVER, Proposition: For $1 \leq k \leq n$, we have:

$$
\left(\frac{n+2k-2}{2}\right)^2 = \inf_{u} \frac{\int_{\mathbb{R}^k_+ \times \mathbb{R}^{n-k}} |\nabla u|^2 dx}{\int_{\mathbb{R}^k_+ \times \mathbb{R}^{n-k}} \frac{u^2}{|x|^2} dx},
$$

where the infimum is taken on $u\in D^{1,2}(\mathbb{R}^k_+\times \mathbb{R}^{n-k})\setminus\{0\}$ is never achieved. In particular,

$$
\gamma_H(\mathbb{R}^n_+)=\frac{n^2}{4}.
$$

 QQ

Unlike the case when 0 is in the interior of a domain, we have the following

Proposition: If $0 \in \partial \Omega$, then

1.
$$
\frac{(n-2)^2}{4} < \gamma_H(\Omega) \leq \frac{n^2}{4}.
$$

2.
$$
\gamma_H(\Omega) = \frac{n^2}{4} \text{ for every } \Omega \text{ such that } 0 \in \partial\Omega \text{ and } \Omega \subset \mathbb{R}^n_+.
$$

3.
$$
\inf \{ \gamma_H(\Omega); 0 \in \partial\Omega \} = \frac{(n-2)^2}{4}.
$$

4. For every $\epsilon > 0$, there exists a smooth domain Ω_{ϵ} such that $0 \in \partial \Omega_{\epsilon}$, $\mathbb{R}^n_+ \subsetneq \Omega_\epsilon \subsetneq \mathbb{R}^n$ and $\frac{n^2}{4} - \epsilon \leq \gamma_H(\Omega_\epsilon) < \frac{n^2}{4}$ $\frac{1}{4}$.

Unlike the case when 0 is in the interior of a domain, we have the following

Proposition: If $0 \in \partial \Omega$, then

\n- 1.
$$
\frac{(n-2)^2}{4} < \gamma_H(\Omega) \leq \frac{n^2}{4}
$$
.
\n- 2. $\gamma_H(\Omega) = \frac{n^2}{4}$ for every Ω such that $0 \in \partial\Omega$ and $\Omega \subset \mathbb{R}_+^n$.
\n- 3. $\inf\{\gamma_H(\Omega); 0 \in \partial\Omega\} = \frac{(n-2)^2}{4}$.
\n- 4. For every $\epsilon > 0$, there exists a smooth domain Ω_{ϵ} such that $0 \in \partial\Omega_{\epsilon}$, $\mathbb{R}_+^n \subsetneq \Omega_{\epsilon} \subsetneq \mathbb{R}^n$ and $\frac{n^2}{4} - \epsilon \leq \gamma_H(\Omega_{\epsilon}) < \frac{n^2}{4}$.
\n

.... and a Caffarelli-Kohn-Nirenberg inequality on \mathbb{R}^n_+ :

There exists $C := C(a, b, n) > 0$ such that for $u \in C_c^{\infty}(\mathbb{R}^k_+ \times \mathbb{R}^{n-k})$,

$$
\left(\int_{\mathbb{R}_+^k\times\mathbb{R}^{n-k}}|x|^{-bq}\left(\Pi_{i=1}^kx_i\right)^q|u|^q\right)^{\frac{2}{q}}\leq C\int_{\mathbb{R}_+^k\times\mathbb{R}^{n-k}}\left(\Pi_{i=1}^kx_i\right)^2|x|^{-2a}|\nabla u|^2dx,
$$

where

$$
-\infty < a < \frac{n-2+2k}{2}, \ \ 0 \leq b-a \leq 1, \ \ q = \frac{2n}{n-2+2(b-a)}.
$$
 (6)

Back to the best constant

More importantly, we then have for any $\gamma < n^2/4$, $0 \le s \le 2$, $2^*(s) := \frac{2(n-s)}{n-2}$,

$$
\left|\left(\int_{\mathbb{R}^n_+} \frac{|u|^{2^*(s)}}{|x|^s} dx\right)^{\frac{2}{2^*(s)}} \leq C''_{n,\gamma,s} \int_{\mathbb{R}^n_+} \left(|\nabla u|^2 - \gamma \frac{u^2}{|x|^2}\right) dx \text{ for } u \in C_c^{\infty}(\mathbb{R}^n).
$$

For $\Omega\subset\mathbb{R}^n$, the best constant $\mu_{\gamma,s}(\Omega):=\inf\{I_{s,\gamma}(\Omega); u\in \mathcal{C}^\infty_c(\Omega)\setminus\{0\}\}$, where

$$
I_{s,\gamma}(u):=\frac{\int_{\Omega}\left(|\nabla u|^2-\gamma\frac{u^2}{|x|^2}\right)\,dx}{\left(\int_{\Omega}\frac{|u|^{2^*(s)}}{|x|^s}\,dx\right)^{\frac{2}{2^*(s)}}},
$$

Again, for any Ω with $0 \in \Omega$, we have for $0 \leq s < 2$ and $\gamma < \gamma_H(\Omega) = (n-2)^2/4$

 $\mu_{\gamma,s}(\Omega) = \mu_{\gamma,s}(\mathbb{R}^n).$

The infimum is never attained unless $\Omega = \mathbb{R}^n$.

What about domains such that $0 \in \partial \Omega$?

We already know that

- $\blacktriangleright~~ \mu_{\gamma,\mathfrak{s}}(\Omega)>0,$ whenever $0\leq \mathfrak{s}< 2$ and $\gamma<\gamma_H(\Omega)< n^2/4.$
- $\blacktriangleright \ \mu_{\gamma,s}(\Omega)<\mu_{\gamma,s}(\mathbb{R}^n_+),$ hence is attained if $s>0, \ n\geq 3$ and $\gamma<\frac{(n-2)^2}{4}.$

What happens in the remaining cases? that is when

$$
\gamma \in \left[\frac{(n-2)^2}{4}, \gamma_H(\Omega)\right) \subset \left[\frac{(n-2)^2}{4}, \frac{n^2}{4}\right)
$$

つひへ

Theorem

Let Ω be a bounded smooth domain of \mathbb{R}^n (n \geq 3) such that $0 \in \partial \Omega$. In particular $\frac{(n-2)^2}{4} < \gamma_H(\Omega) \leq \frac{n^2}{4}$ $\frac{1}{4}$. Let $0 \leq s < 2$.

- 1. If $\gamma_H(\Omega) \leq \gamma < \frac{n^2}{4}$ $\frac{1}{4}$, then there are extremals for $\mu_{\gamma,s}(\Omega)$ for every $s\in[0,2)$ and any $n > 3$.
- 2. If $\gamma < \gamma_H(\Omega)$ and $s > 0$, then \blacktriangleright $\gamma \leq \frac{n^2-1}{a^4}$ and the mean curvature of ∂Ω at 0 is negative. $\blacktriangleright \ \ \gamma > \frac{n^2-1}{4}$ and the Hardy b-mass $m_\gamma(\Omega)$ is positive.

Table: Singular Sobolev-Critical term: $s > 0$

Hardy term	Dimension	Geometric condition	Extremal
$-\infty < \gamma$	n > 3	Negative mean curvature at 0	Yes
	n > 3	Positive boundary-mass	Yes

つくい

Table: Non-singular Sobolev-Critical term: $s = 0$

Theorem Let Ω be a bounded smooth domain of \mathbb{R}^3 such that $0 \in \partial \Omega$. In particular $\frac{1}{4}<\gamma_H(\Omega)\leq \frac{9}{4}.$

- \blacktriangleright If $\gamma_H(\Omega) \leq \gamma < \frac{9}{4}$, then there are extremals for $\mu_{\gamma,0}(\Omega)$.
- If $0 < \gamma < \gamma_H(\Omega)$, and if there exists $x_0 \in \Omega$ such that $R_\gamma(\Omega, x_0) > 0$, then there are extremals for $\mu_{\gamma,0}(\Omega)$, under either one of the following conditions:

つくい

1. $γ ≤ 2$ and the mean curvature of $∂Ω$ at 0 is negative.

2. $\gamma > 2$ and the mass $m_\gamma(\Omega)$ is positive.

Standard scheme but the challenge is in the implementation

Standard fact: (Dating back to the Yamabe problem (Trudinger, Aubin)

IF $\mu_{\gamma,s}(\Omega)<\mu_{\gamma,s}(\mathbb{R}^{n}_+)$, then there are extremals for $\mu_{\gamma,s}(\Omega).$

 299

Standard scheme but the challenge is in the implementation

Standard fact: (Dating back to the Yamabe problem (Trudinger, Aubin)

IF $\mu_{\gamma,s}(\Omega)<\mu_{\gamma,s}(\mathbb{R}^{n}_+)$, then there are extremals for $\mu_{\gamma,s}(\Omega).$

Another standard fact: Use the nonnegative extremal $\mathit{U}\in D^{1,2}(\mathbb{R}^{n}_+)$ for $\mu_{\gamma,s}(\mathbb{R}^{n}_+)$ (if it exists) to build test functions. Besides existence, one needs information on the profile i.e. behavior at 0 and at infinity.

Standard fact: (Dating back to the Yamabe problem (Trudinger, Aubin)

IF $\mu_{\gamma,s}(\Omega)<\mu_{\gamma,s}(\mathbb{R}^{n}_+)$, then there are extremals for $\mu_{\gamma,s}(\Omega).$

Another standard fact: Use the nonnegative extremal $\mathit{U}\in D^{1,2}(\mathbb{R}^{n}_+)$ for $\mu_{\gamma,s}(\mathbb{R}^{n}_+)$ (if it exists) to build test functions. Besides existence, one needs information on the profile i.e. behavior at 0 and at infinity.

Proposition (Existence on \mathbb{R}^n_+): Fix $\gamma < \frac{n^2}{4}$ $\frac{1}{4}$ and $s \in [0,2)$ with $n \geq 3$. Then,

1. If either $\{s > 0\}$ or $\{s = 0, \gamma > 0 \text{ and } n \ge 4\}$, then $\mu_{\gamma,s}(\mathbb{R}^n_+)$ is attained.

2. If $\{s = 0 \text{ and } \gamma \le 0\}$, there are no extremals for $\mu_{\gamma,0}(\mathbb{R}^n_+)$.

3. The only unknown situation on \mathbb{R}^n_+ is when $\{s = 0, n = 3 \text{ and } \gamma > 0\}$, BUT: If $\mu_{\gamma,0}(\mathbb{R}^n_+)$ is not attained, then $\mu_{\gamma,0}(\mathbb{R}^n_+) = \inf_{u \in D^{1,2}(\mathbb{R}^n) \setminus \{0\}}$ $\int_{\mathbb{R}^n} |\nabla u|^2 dx$ $\frac{J_{\mathbb{R}^{n}} + \sqrt{u} - 3x}{\left(\int_{\mathbb{R}^{n}} |u|^{2^{*}} dx\right)^{\frac{2}{2^{*}}}}$.

Theorem (Symmetry on \mathbb{R}^n_+): If $u\in D^{1,2}(\mathbb{R}^n_+)$ is an extremal for $\mu_{\gamma,0}(\mathbb{R}^n_+)$, then $u\circ\sigma=u$ for all isometry of \mathbb{R}^n such that $\sigma(\mathbb{R}^n_+)=\mathbb{R}^n_+$. In particular, there exists $v \in C^\infty((0, +\infty) \times \mathbb{R})$ such that for all $x_1 > 0$ and all $x' \in \mathbb{R}^{n-1}$, we have that $u(x_1, x') = v(x_1, |x'|).$

Question (Behavior at 0 and ∞)

The three main cases

Define $u_\epsilon(x):=\eta(x)\left(\epsilon^{-\frac{n-2}{2}}U(\epsilon^{-1}\cdot)\right)\circ\varphi^{-1}(x),$ where η is a cut-off around 0 and φ is a chart mapping locally \mathbb{R}^n_+ on $\Omega.$

1. If
$$
\gamma < \frac{n^2-1}{4}
$$
, then $\int_{\partial \mathbb{R}^n_+} |x|^2 |\nabla U|^2 \, dx < +\infty$, then the test functions u_{ϵ} work: $\boxed{I_{s,\gamma}(u_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}^n_+) + C_{n,s,\gamma} \cdot H(0) \cdot \epsilon + o(\epsilon)}$, where $H(0)$ is the mean curvature of $\partial \Omega$ at 0.

Nassif Ghoussoub, UBC (Joint work with Frédéric Robert (Université de Lo**rchan et and Antive** Sobolev operator with a boundary singularity

The three main cases

Define $u_\epsilon(x):=\eta(x)\left(\epsilon^{-\frac{n-2}{2}}U(\epsilon^{-1}\cdot)\right)\circ\varphi^{-1}(x),$ where η is a cut-off around 0 and φ is a chart mapping locally \mathbb{R}^n_+ on $\Omega.$

1. If
$$
\gamma < \frac{n^2-1}{4}
$$
, then $\int_{\partial \mathbb{R}_+^n} |x|^2 |\nabla U|^2 dx < +\infty$, then the test functions u_{ϵ} work:

$$
I_{s,\gamma}(u_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}_+^n) + C_{n,s,\gamma} \cdot H(0) \cdot \epsilon + o(\epsilon)
$$

where $H(0)$ is the mean curvature of $\partial\Omega$ at 0.

2. For $\gamma=\frac{n^2-1}{4}$ one needs a finer analysis of the linear operator $L_\gamma:=-\Delta-\frac{\gamma}{|x|^2}$ to establish that U behaves exactly like $x_1|x|^{-\alpha_+}$ at infinity.

$$
I_{s,\gamma}(u_\varepsilon)=\mu_{\gamma,s}(\mathbb{R}^n_+)+C_{n,s,\gamma}\cdot H(0)\cdot \varepsilon \ln(1/\varepsilon)+o(\varepsilon \ln(1/\varepsilon))
$$

つへへ

The three main cases

Define $u_\epsilon(x):=\eta(x)\left(\epsilon^{-\frac{n-2}{2}}U(\epsilon^{-1}\cdot)\right)\circ\varphi^{-1}(x),$ where η is a cut-off around 0 and φ is a chart mapping locally \mathbb{R}^n_+ on $\Omega.$

1. If
$$
\gamma < \frac{n^2-1}{4}
$$
, then $\int_{\partial \mathbb{R}_+^n} |x|^2 |\nabla U|^2 dx < +\infty$, then the test functions u_{ϵ} work:

$$
I_{s,\gamma}(u_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}_+^n) + C_{n,s,\gamma} \cdot H(0) \cdot \epsilon + o(\epsilon)
$$

where $H(0)$ is the mean curvature of $\partial\Omega$ at 0.

2. For $\gamma=\frac{n^2-1}{4}$ one needs a finer analysis of the linear operator $L_\gamma:=-\Delta-\frac{\gamma}{|x|^2}$ to establish that U behaves exactly like $x_1|x|^{-\alpha_+}$ at infinity.

$$
I_{s,\gamma}(u_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}^n_+) + C_{n,s,\gamma} \cdot H(0) \cdot \epsilon \ln(1/\epsilon) + o(\epsilon \ln(1/\epsilon))
$$

3. For $\frac{n^2-1}{4} < \gamma < \frac{n^2}{4}$ $\frac{1}{4}$, then one constructs global profiles v_{ϵ} ,

$$
v_{\epsilon}(x) := u_{\epsilon}(x) + \epsilon^{\frac{\alpha_{+}-\alpha_{-}}{2}} \beta(x),
$$
 where

$$
\beta(x)=m_{\gamma}(\Omega)\frac{d(x,\partial\Omega)}{|x|^{\alpha-}}+o\left(\frac{d(x,\partial\Omega)}{|x|^{\alpha-}}\right) \text{ as } x\to 0.
$$

in such a way that

$$
I_{s,\gamma}(v_{\epsilon}) = \mu_{\gamma,s}(\mathbb{R}^n_+) - C_{n,s,\gamma} \cdot m_{\gamma}(\Omega) \cdot \epsilon^{\alpha_+ - \alpha_-} + o(\epsilon^{\alpha_+ - \alpha_-})
$$

つひへ

where $m_\gamma(\Omega)$ is the Hardy-singular boundary mass of Ω .

On \mathbb{R}^n_+ , we define $u_\alpha(x):=x_1|x|^{-\alpha}$ for $\alpha\in\mathbb{R}$. The first remark is that

$$
\Delta u_{\alpha} - \frac{\gamma}{|x|^2} u_{\alpha} = 0 \text{ in } \mathbb{R}^n_+ \Leftrightarrow \{ \alpha = \alpha_-(\gamma) \text{ or } \alpha = \alpha_+(\gamma) \}
$$

where

$$
\alpha_{-}(\gamma) := \frac{n}{2} - \sqrt{\frac{n^2}{4} - \gamma} \text{ and } \alpha_{+}(\gamma) := \frac{n}{2} + \sqrt{\frac{n^2}{4} - \gamma}
$$

Note: $\alpha_+ < \frac{n}{2} < \alpha_+$, which points to the difference between the two canonical solutions, one is variational namely $x\mapsto x_1|x|^{-\alpha_-(\gamma)}$ is locally in $D^{1,2}(\mathbb{R}^n_+)$, and the "large one" $x \mapsto x_1|x|^{-\alpha+(\gamma)}$ is not.

Note: the analogy with the case of harmonic functions on \mathbb{R}^n (i.e., solutions of $\Delta u = 0$ on $\mathbb{R}^n \setminus \{0\}$:

$$
\Delta |x|^{-\beta} = 0 \text{ in } \mathbb{R}^n \setminus \{0\} \Leftrightarrow \{\beta = 0 \text{ or } \beta = n-2\}.
$$

 QQ

All non-negative solutions of L_{γ} $u=0$ on \mathbb{R}^{n}_{+} turned out to be a linear combination of the two basic ones. Indeed, we prove the following:

Theorem: Let $u \in C^2(\overline{\mathbb{R}^n_+} \setminus \{0\})$ be a nonnegative function such that

$$
-\Delta u - \frac{\gamma}{|x|^2}u = 0 \text{ in } \mathbb{R}^n_+ \; ; \; u = 0 \text{ on } \partial \mathbb{R}^n_+.
$$

Then there exist $\lambda_-, \lambda_+ > 0$ such that

$$
u(x) = \lambda_- x_1 |x|^{-\alpha_-} + \lambda_+ x_1 |x|^{-\alpha_+} \text{ for all } x \in \mathbb{R}_+^n.
$$

Remark: We eventually show that $x \mapsto d(x, \partial \Omega)|x|^{-\alpha-(\gamma)}$ is essentially the profile at 0 of any variational solution –positive or not– of equations of the form $L_{\gamma}u = f(x, u)$, as long as the nonlinearity f is dominated by $C(|v|+\frac{|v|^{2^*(s)}}{|v|^{s}})$ $\frac{|x|^s}{|x|^s}$).

つへへ

Regularity and Hopf-type lemma

Theorem: Consider $u \in D^{1,2}(\Omega)$ that is locally (around 0) a solution to

$$
-\Delta u - \frac{\gamma + O(|x|^{\tau})}{|x|^2}u = f(x, u)
$$

where $|f(x,u)|\leq C|u|\left(1+\frac{|u|^{2^{\star}(s)-2}}{|x|^s}\right)$ $\frac{|\chi^*(s)-2}{|\chi|^s} \biggr)$, $\tau > 0$. Then there exists $K \in \mathbb{R}$ such that

$$
u(x) = K \frac{d(x, \partial \Omega)}{|x|^{\alpha_-}} + o\left(\frac{d(x, \partial \Omega)}{|x|^{\alpha_-}}\right) \text{ when } x \to 0.
$$

Moreover, if $u > 0$, $u \neq 0$, then $K > 0$.

Remark 1: when $\gamma = 0$, we have $\alpha = 0$ and this is exactly Hopf's lemma $(K = -\partial_{\nu}u(0) > 0).$

Remark 2: Unlike the case when $L_{\gamma} = L_0 = -\Delta$) or when the singularity 0 is in the interior, the standard DeGiorgi-Nash-Moser iterative scheme is not sufficient to obtain the required regularity. It only yields that $u \in L^p$ for all $p < p_0 < \frac{n}{\alpha_-(\gamma)-1}$.

Remark 3: However, the improved order p_0 is enough to allow for the inclusion of the nonlinearity $f(x, u)$ in the linear term, hence reducing the analysis to when $f(x, u) \equiv 0$. We get the conclusion by constructing super- and sub- solutions to the linear equation behaving like the canonical solutions.

Profile of the limiting solution

Theorem: Assume $\gamma < \frac{n^2}{4}$ $\frac{p^2}{4}$ and let $u \in D^{1,2}(\mathbb{R}^n_+)$, $u \ge 0$, $u \not\equiv 0$ be a weak solution to

$$
-\Delta u - \frac{\gamma}{|x|^2} u = \frac{u^{2^*(s)-1}}{|x|^s} \text{ in } \mathbb{R}^n_+.
$$

Then, there exist $K_1, K_2 > 0$ such that

$$
u(x) \sim_{x \to 0} K_1 \frac{x_1}{|x|^{\alpha - (\gamma)}} \quad \text{and} \quad u(x) \sim_{|x| \to +\infty} K_2 \frac{x_1}{|x|^{\alpha + (\gamma)}}.
$$

Remark: This description of the profile of variational solutions allows to construct sharper test functions and to prove existence of extremals up to $\gamma = \frac{n^2-1}{4}$. Indeed, the estimates

$$
u(x) \leq C_{x_1}|x|^{-\alpha_+(\gamma)} \quad \text{and} \quad |\nabla u(x)| \leq C|x|^{-\alpha_+(\gamma)} \text{ for all } x \in \mathbb{R}^n_+.
$$
 (7)

つくい

and the fact that

$$
\gamma < \frac{n^2-1}{4} \Leftrightarrow \alpha_+(\gamma) - \alpha_-(\gamma) > 1
$$

yield that if $\gamma < \frac{n^2-1}{4}$, then $|x'|^2|\partial_1u|^2 = O(|x'|^{2-2\alpha_+(\gamma)})$ as $|x'| \to +\infty$ on $\partial \mathbb{R}^n_+ = \mathbb{R}^{n-1}$, from which we could deduce that $x' \mapsto |x'|^2 |\partial_1 u(x')|^2$ is in $L^1(\partial \mathbb{R}^n_+)$. This estimate does not hold when $\gamma \geq \frac{n^2-1}{4}$.

Classification of positive singular solutions

To deal with the remaining cases for γ , we need the following result which describes the general profile of any positive solution of $L_{\gamma}u = a(x)u$, albeit variational or not.

Theorem: Let $u \in C^2(\overline{\Omega} \cap B_\delta(0) \setminus \{0\})$ be a **positive** solution to

$$
\Delta u - \frac{\gamma}{|x|^2}u = 0 \text{ in } \Omega \cap B_\delta(0) \setminus \{0\}; \quad u = 0 \text{ on } (\partial \Omega) \cap B_\delta(0).
$$

Then, either u behaves like $d(\cdot,\partial\Omega)|x|^{-\alpha_-(\gamma)}$ or like $d(\cdot,\partial\Omega)|x|^{-\alpha_+(\gamma)}$.

Classification of positive singular solutions

To deal with the remaining cases for γ , we need the following result which describes the general profile of any positive solution of $L_{\gamma}u = a(x)u$, albeit variational or not.

Theorem: Let $u \in C^2(\overline{\Omega} \cap B_\delta(0) \setminus \{0\})$ be a **positive** solution to

$$
\Delta u - \frac{\gamma}{|x|^2}u = 0 \text{ in } \Omega \cap B_\delta(0) \setminus \{0\}; \quad u = 0 \text{ on } (\partial \Omega) \cap B_\delta(0).
$$

Then, either u behaves like $d(\cdot,\partial\Omega)|x|^{-\alpha_-(\gamma)}$ or like $d(\cdot,\partial\Omega)|x|^{-\alpha_+(\gamma)}$.

A Harnack inequality: Let Ω be a smooth bounded domain of \mathbb{R}^n , $a\in L^\infty(\Omega)$ and U an open subset of $\mathbb{R}^n.$ Consider $u\in\mathcal{C}^2(\mathcal{U}\cap\overline{\Omega})$ to be a solution of

$$
\begin{cases}\n-\Delta_g u + au = 0 & \text{in } U \cap \Omega \\
u \ge 0 & \text{in } U \cap \Omega \\
u = 0 & \text{on } U \cap \partial \Omega,\n\end{cases}
$$

where g is a smooth metric on U. If $U' \subset\subset U$ is such that $U' \cap \Omega$ is connected, then there exists $C>0$ depending only on $\Omega,$ $U',$ $\|a\|_{\infty}$ and g such that

$$
\frac{u(x)}{d(x,\partial\Omega)} \leq C \frac{u(y)}{d(y,\partial\Omega)} \text{ for all } x,y \in U' \cap \Omega. \tag{8}
$$

 Ω

- \triangleright Sub- super-solutions of the linear equations that behave like the two models (one needs to compensate the mean curvature).
- \triangleright A notion of distributional solutions that distinguish the variational and the non-variational solutions.

What about the case $\gamma > \frac{n^2-1}{4}$?

This involves a notion of mass in the spirit of Schoen-Yau:

Proposition: Fix $\frac{n^2-1}{4} < \gamma < \gamma_H(\Omega)$. Then, up to a positive multiplicative constant, $\exists !\, \mathsf{G}\in \mathsf{C}^2(\overline{\Omega}\setminus\{0\})$ such that

$$
\left\{\begin{array}{ll} \Delta G-\frac{\gamma}{|x|^2}G=0 & \text{ in } \Omega\\ G>0 & \text{ in } \Omega\\ G=0 & \text{ on } \partial\Omega\setminus\{0\}\end{array}\right\}
$$

Moreover, there exists $C_1, C_2 \in \mathbb{R}, C_1 > 0$, such that

$$
G(x) = C_1 \frac{d(x, \partial \Omega)}{|x|^{\alpha_+}} + C_2 \frac{d(x, \partial \Omega)}{|x|^{\alpha_-}} + o\left(\frac{d(x, \partial \Omega)}{|x|^{\alpha_-}}\right)
$$

when $x \rightarrow 0$. We define the mass as

$$
m_{\gamma}(\Omega):=\frac{C_2}{C_1}\in\mathbb{R}.
$$

つくい

- 1. The map $\Omega \to m_{\gamma}(\Omega)$ is a monotone increasing function on the class of domains having zero on their boundary, once ordered by inclusion.
- 2. $m_\gamma(\mathbb{R}^n_+)=0$ for any $\frac{n^2-1}{4}<\gamma<\frac{n^2}{4}$ $\frac{7}{4}$, and therefore the mass of any one of its subsets having zero on its boundary is non-positive. In particular, $m_{\gamma}(\Omega) < 0$ whenever Ω is convex and $0 \in \partial \Omega$.
- 3. On the other hand, we have examples of bounded domains Ω in \mathbb{R}^n with $0 \in \partial \Omega$ and with positive mass $m_\gamma(\Omega) > 0$.
- 4. We have examples of domains with positive/negative mass with any local behavior at 0.

In other words, the sign of the Hardy b-mass is totally independent of the local properties of $\partial \Omega$ around 0.

つくい

The remaining case, i.e., $n=3$ and $s=0$ and $\gamma\in(0,\frac{n^2}{4})$ $\frac{7}{4}$

In this situation, there may or may not be extremals for $\mu_{\gamma,0}(\mathbb{R}^n_+).$

- 1. If they do exist, one can argue as before –using the same test functions– to get:
	- ► Either $\gamma \leq \frac{n^2-1}{4}$ and the mean curvature of $\partial \Omega$ at 0 is negative ► Erner $\frac{1}{\pi}$ and the mass $m_{\gamma}(\Omega)$ is positive.
- 2. If no extremal exist for $\mu_{\gamma,0}(\mathbb{R}^n_+)$, then $\mu_{\gamma,0}(\mathbb{R}^n_+) = \mu_{0,0}(\mathbb{R}^n_+)$, the best constant in the Sobolev inequality. We are back to the case of the Yamabe problem with no boundary singularity.

One then resorts to a more standard notion of mass $R_{\gamma}(\Omega, x_0)$ associated to an interior point $x_0 \in \Omega$ and construct test-functions in the spirit of Schoen: For $\gamma \in (0, \gamma_H(\Omega))$, any solution G of

$$
\left\{\begin{array}{rcl} -\Delta G-\frac{\gamma}{|x|^2}G=0 &\text{ in }\Omega\setminus\{x_0\}\\ G>0 &\text{ in }\Omega\setminus\{x_0\}\\ G=0 &\text{ on }\partial\Omega\setminus\{0\},\end{array}\right.
$$

is unique up to multiplication by a constant, and that for any $x_0 \in \Omega$, there exists $R_{\gamma}(\Omega, x_0) \in \mathbb{R}$ (independent of G) and $c_G > 0$ such that

$$
G(x) = c_G\left(\frac{1}{|x-x_0|^{n-2}} + R_\gamma(\Omega,x_0)\right) + o(1) \quad \text{ as } x \to x_0.
$$

つひへ

The quantity $R_{\gamma}(\Omega, x_0)$ is well defined.

Table: The critical cases: $s = 0$

 \leftarrow \Box \rightarrow

 \mathcal{A} 有 299

Þ

Þ