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The SGSW system SGSW in physical space

Setting

SGSW models the motion of a fluid rapidly rotating around the
vertical axis x3, contained within the evolving 3-dimensional region
D(t) which has the structure:

D(t) = {(x1, x2, x3) ∈ R3 : (x1, x2) ∈ Ω, 0 ≤ x3 ≤ h(t, x1, x2)},

where the region Ω of the (x1, x2)-plane is given and fixed, but the
height h above the reference level is unknown and can evolve in time.
The pressure on the top boundary of the fluid is a given constant p0,
and

p(t, x1, x2, x3) = [h(t, x1, x2)− x3] + p0.

The horizontal components of the velocity v = (u, u3) of the fluid are
independent of x3.
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The SGSW system SGSW in a readable form

SGSW in terms of the modified pressure

Introduce
P (t, x) = p(t, x) + (x2

1 + x2
2)/2,

to write SGSW as

DtX = J
(
X − x

)
,

∂th+∇ · (hu) = 0

X = ∇P, P = h+
1

2
|IdΩ|2 in [0, T )× Ω;

u · ν = 0 on [0, T )× ∂Ω,
P (0, ·) = P0 in Ω,

Here J =

(
0 −1
1 0

)
.
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The SGSW system SGSW in a readable form

Cullen-Purser stability

Let (P,u) be a solution and set X (t) := {(Y, ρ) : Y : Ω→
R2 Borel, ρ ∈ Pac(Ω), Y#ρ = ∇P (t, ·)#h(t, ·)}.
(Cullen & Shutts) Then (∇P (t, ·), h(t, ·)) is a critical point for

I(Y, ρ) =

∫
Ω
|Y (x)− x|2ρ(x)dx+

∫
Ω
ρ2(x)dx

over X (t), for all t ∈ (0, T ).

(Cullen & Purser) Only minimizers are stable, in the sense that SG
accurately describes their evolution.

In the language of Optimal Transport, this means X(t, ·) must be the
gradient of a convex function, i.e. P (t, ·) must be convex for all
t ∈ (0, T ).

Thus, one is only interested in solutions satisfying this constraint.
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The SGSW system Existence unknown

Do we have solutions?

No existence results for weak Eulerian solutions.

Theorem (Feldman & T.)

Let (P,u) be a distributional solution for SG in the physical space such
that ∇P ∈ H1(0, T ;L2(Ω;R3)). Then αt := ∇Pt#χ is atom-free for
L1–a.e. t ∈ (0, T ).

(Cullen) The model must accommodate solutions for which ∇Pt is
locally constant. Observations show that the atmosphere contains
significant regions where the potential temperature and absolute
momentum of the atmosphere are well-mixed, representing a state of
neutrality to parcel displacements (yielding “flat spots” in ∇Pt).
Such states commonly arise as a result of atmospheric forcing either
through surface heating or latent heat release.
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The SGSW system SGSW in dual space

A change of variable and a new system

Let ∇Pt#ht =: αt. If
∫

Ω h0(x)dx = 1, then αt is a Borel probability.

Let X = ∇P (t, x). Then αt solves:

∂tα+∇ · (Uα) = 0 in [0, T )× R2;

∇P (t, ·)#h(t, ·) = α(t, ·) for any t ∈ [0, T );

P (t, x) = h(t, x) + |x|2/2, with P (t, ·) convex for all t ∈ [0, T );

U(t,X) = J [X − γ̄(t,X)],

α(0, X) = α0(X) for a.e. X ∈ R2,

where γ̄(t,X) denotes the barycentric projection onto αt of the
optimal transfer plan between αt and ht, i.e.∫

R2

ξ(X) · γ̄(X)α(dX) =

∫∫
R2×Ω

ξ(X) · y γ(dX, dy)

for all continuous ξ : R2 → R2 of at most quadratic growth, where γ
is the (unique) optimal plan between α and h.
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The SGSW system SGSW in dual space

SG in dual variables

Existence of solutions in dual variables: Cullen & Gangbo in the case
αt � L2.

This is a Hamiltonian system (Gangbo & Pacini, Ambrosio &
Gangbo) for

H(µ) = −1

2
inf

h∈Pac(Ω)

{
W 2

2 (µ, h) + ‖h‖2L2(Ω)}.

Uniqueness is open!
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Lagrangian solutions Yet another system

Formal Lagrangian flow

Assume one has a classical solution to SGSW in physical space.

If u has a flow F : [0, T ]× Ω→ Ω defined by

Ḟ (t, x) = u(t, F (t, x)), F (0, x) = x for h0−a.e. x ∈ Ω,

then F can replace u as an unknown. Let Z(t, x) := ∇P (t, F (t, x)).

The system for (P, F ) becomes

∂tZ(t, x) = J
[
Z(t, x)− F (t, x)

]
for t ∈ [0, T ) and h0−a.e. x ∈ Ω,

Z(0, x) = ∇P0(x) h0 − a.e. in Ω.
(LE)
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Lagrangian solutions Weak Lagrangian solutions in physical space

Definition of weak Lagrangian solutions

Let P0 ∈ L∞(Ω) be convex such that h0 := P0− |IdΩ|2/2 ∈ P(Ω), and let
p ∈ [1,∞). Let P : [0, T )× Ω→ R such that

Pt := P (t, ·) is convex for all t ∈ [0, T ), Pt − |IdΩ|2/2 =: ht ∈ P(Ω),

P ∈ L∞([0, T );W 1,∞(Ω)) ∩ C([0, T );W 1,p(Ω)).

Let F ∈ C([0, T );Lp(h0;R2)) be a Borel map. The pair (P, F ) is called a
weak Lagrangian solution of SGSW in physical space if

F (0, ·) = IdΩ h0− a.e. in Ω, P (0, x) = P0(x) for a.e. x ∈ Ω,

for any t > 0 we have Ft#h0 = ht;

There exists a Borel map F ∗ : [0, T )× Ω→ Ω such that for every
t ∈ (0, T ) we have F ∗t#ht = h0, and F ∗t ◦ Ft(x) = x for h0−a.e.
x ∈ Ω and Ft ◦ F ∗t (x) = x for ht−a.e. x ∈ Ω;

Lagrangian equation (LE) is satisfied in the sense of distributions.
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Lagrangian solutions Weak Lagrangian solutions in physical space

Consistency and existence

Cullen & Feldman proved that by setting u(t, x) := ∂tF (t, F ∗(t, x))
under the assumption ∂tF ∈ L∞((0, T )× Ω;R2), we obtain that the
pair (P,u) is a weak (Eulerian) solution of SGSW in physical space.

Cullen & Feldman used Ambrosio’s theory of regular Lagrangian flows
to construct weak Lagrangian solutions in physical space in the case
α0 =: ∇P0#h0 ∈ Lp(∇P0(Ω)) for some p > 1, where P0 is bounded
and convex in an open ball containing Ω̄ .

Result extended to α0 =: ∇P0#h0 ∈ L1(∇P0(Ω)) by Faria et al.
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Lagrangian solutions Case of singular measures in dual space

When α0 is singular; example

If α0 = 1.25πδz0 for some z0 ∈ ∂B(0, 1), one can readily check that
if ż(t) = 0.8 Jz(t), z(0) = z0, then αt := 1.25πδz(t) solves SGSW in
dual space.

Here, ht(x) = 2− |x− z(t)|2/2, Pt(x) = x · z(t) + 3/2.

There are no maps Ft as in the definition of weak Lagrangian
solutions.

It is natural to ask if one can appropriately weaken the notion so as to
accommodate this case.

Desirable to accommodate the general case α0 ∈ P2(R2).
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if ż(t) = 0.8 Jz(t), z(0) = z0, then αt := 1.25πδz(t) solves SGSW in
dual space.

Here, ht(x) = 2− |x− z(t)|2/2, Pt(x) = x · z(t) + 3/2.

There are no maps Ft as in the definition of weak Lagrangian
solutions.

It is natural to ask if one can appropriately weaken the notion so as to
accommodate this case.

Desirable to accommodate the general case α0 ∈ P2(R2).

Fields Institute (Toronto) Lagrangian solutions for SGSW November, 2014 12 / 20



Lagrangian solutions Case of singular measures in dual space

When α0 is singular; example

If α0 = 1.25πδz0 for some z0 ∈ ∂B(0, 1), one can readily check that
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Lagrangian solutions Renormalized solutions

An observation (1)

For ξ ∈ C1(R2) ∩ Lip(R2) the map t 7→ ξ(Z(t, x)) is absolutely
continuous for L2-a.e. x ∈ Ω and

d

dt
ξ(Z(t, x))h0(x) = ∇ξ(Z(t, x)) · J

[
Z(t, x)− F (t, x)

]
h0(x)

for a.e. t ∈ [0, T ]. Consequently, a more general, “renormalized”
version of (LE) is available in the form∫ T

0

∫
Ω

{
ξ(Z(t, x))∂tζ(t, x) +∇ξ(Z(t, x)) · J

[
F (t, x)

− Z(t, x)
]
ζ(t, x)

}
h0(x) dx dt+

∫
Ω
ξ(∇P0(x))ζ(0, x)h0(x) dx = 0,

for any ξ ∈ C1(R2) ∩ Lip(R2), ζ ∈ C1
c ([0, T )× Ω).
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Lagrangian solutions Renormalized solutions

An observation (2)

Assuming existence of weak Lagrangian solution (P, F ), we define the
measure σ on (0, T )× Ω× Ω by∫ T

0

∫
Ω

∫
Ω
ξ(t, x, y)σ(dt, dx, dy) =

∫ T

0

∫
Ω
ξ(t, x, F (t, x))h0(x) dxdt,

for all ξ ∈ Cb((0, T )× Ω× Ω). We notice first that the property
F (t, ·)#h0 = ht shows that σ disintegrates as∫ T

0

∫
Ω

∫
Ω
ξ(t, x, y)σ(dt, dx, dy) =

∫ T

0

(∫
Ω

∫
Ω
ξ(t, x, y)σt(dx, dy)

)
dt

for all ξ ∈ Cb((0, T )× Ω× Ω), where σt :=
(
IdΩ × Ft

)
#
h0.
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Lagrangian solutions Renormalized solutions

An observation (3)

[0, T ] 3 t 7→ σt is a Borel family of measures on Ω× Ω such that

projxσt = h0, and projyσt = ht for all t ∈ [0, T ]. (P1)

The renormalized weak form of the PDE becomes∫ T

0

∫∫
Ω×Ω

{
ξ(∇Pt(y))∂tζ(t, x) +∇ξ(∇Pt(y)) · J

[
y

−∇Pt(y)
]
ζ(t, x)

}
σ(dt, dx, dy) +

∫
Ω
ξ(∇P0(x))ζ(0, x)h0(x) dx = 0

(P2)

for all ξ ∈ C1
c

(
R2
)

and all ζ ∈ C1
c ([0, T )× Ω).

Goal: make up a definition based on these observations.
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Lagrangian solutions Relaxed renormalized Lagrangian solution

Relaxed notion; definition

Let P0 : R2 → R ∪ {∞} be convex such that P0|Ω ∈ L2(Ω),
P0|Ω− 1

2 |IdΩ|2 =: h0 ∈ P(Ω) and ∇P0|Ω ∈ L2(h0;R2) (C)

Definition of Relaxed (Renormalized) Lagrangian Solutions

Consider a Borel function P : [0, T )× R2 → R ∪ {∞} such that P (t, ·) is
convex for all t ∈ [0, T ) and a Borel family of probability measures
[0, T ) 3 t 7→ σt ∈ P(Ω× Ω). Let σ be given by dσ = dσt dt. We say that
(P, σ) is a relaxed Lagrangian solution for the SGSW system with initial
data P0 if

i P (0, ·)|Ω ≡ P0|Ω;

ii Pt − |IdΩ|2/2 =: ht ∈ P(Ω) for all t ∈ [0, T );

iii ∇P ∈ L2(h;R2) (as functions of both variables);

iv (P1), (P2) hold.
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Main results Weak stability

Weak stability

Theorem

Let P0, P
n
0 satisfy (C) for all positive integers n with respect to Ω.

Assume (Pn, σn) are relaxed solutions for SGSW in physical space
corresponding to the initial data Pn

0 . Then, possibly up to a subsequence,
(Pn, σn) converges to a relaxed solution (P, σ) corresponding to the initial
datum P0. The convergence is in the following sense:

(i) Pn
t ⇀ Pt weakly in L2(Ω) and locally uniformly in Ω for all t ∈ [0, T ];

(ii) ∇Pn
t → ∇Pt a.e. in Ω for all t ∈ [0, T ], and {∇Pt}n is locally

bounded uniformly with respect to t ∈ [0, T ] and n ≥ 1;

(iii) σn converges narrowly to σ.

Furthermore, the corresponding dual space solutions satisfy
Wp(α

n
t , αt)→ 0 for all t ∈ [0, T ] and all 1 ≤ p < 2.
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Main results Existence

Existence

Corollary

Let Ω ⊂ R2 be open, bounded and connected. Let P0 satisfy (C) with
respect to Ω. Then there exists a relaxed Lagrangian solution for SGSW
corresponding to the initial data P0.
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Main results Comments

A few important observations

Renormalization is used to show that the relaxed solutions give rise to
dual-space solutions.

The variational characterization of P, h, α was extended (with
stability) from the case α� L2 (Cullen & Gangbo) to α ∈ P2(R2):
h minimizes Pac(Ω) 3 ρ 7→W 2

2 (ρ, α) + ‖ρ‖2L2(Ω) iff P = h+ |IdΩ|2/2
satisfies (C) and α = ∇P#h.

Relaxed renormalized Lagrangian solutions give rise to weak
Lagrangian solutions (as in Cullen & Feldman) under the assumption
that the measures σt are supported on graphs.
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stability) from the case α� L2 (Cullen & Gangbo) to α ∈ P2(R2):
h minimizes Pac(Ω) 3 ρ 7→W 2

2 (ρ, α) + ‖ρ‖2L2(Ω) iff P = h+ |IdΩ|2/2
satisfies (C) and α = ∇P#h.

Relaxed renormalized Lagrangian solutions give rise to weak
Lagrangian solutions (as in Cullen & Feldman) under the assumption
that the measures σt are supported on graphs.
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