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Multi-agent matching under transferable utility

Probability measures µi on compact Xi ⊆ Rn, i = 1, 2, ...,m .

distributions of agent types.

Surplus function s(x1, x2, ..., xm)

Matching measure:

A probability measure γ on X1 × X2 × ...× Xm whose
marginals are the µi .
Γ(µ1, µ2, ..., µm) = set of all matchings.

A matching is stable if there exists functions
u1(x1), u2(x2), ..., um(xm) such that

m∑
i=1

ui (xi ) ≥ s(x1, x2, ..., xm)

with equality γ almost everywhere (payoff functions).

A division of the utility among matched agents.
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Variational formulation: multi-marginal optimal transport

Shapley-Shubik (1972): A matching is stable if and only if it
maximizes:

γ 7→
∫
X1×X2×...×Xm

s(x1, x2, ..., xm)dγ,

over Γ(µ1, µ2, ..., µm)
A multi-marginal optimal transportation problem.

Existence of a stable matching is easy to show. What about
uniqueness? Purity – is γ concentrated on a graph over x1?

When m = 2, the generalized Spence-Mirrlees, or twist
condition yields uniqueness and purity:

Injectivity of x2 7→ Dx1s(x1, x2) (Ex. s(x1, x2) = x1 · x2.)

Brenier ’87, Gangbo ’95, Caffarelli ’96, Gangbo-McCann ’96,
Levin ’96: If µ1 is absolutely continuous with respect to
Lebesgue measure and s is twisted, the stable match γ is
unique and pure.
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A condition for purity and uniqueness

A set S ⊆ X2 × X3...× Xm is an s-splitting set at a fixed
x1 ∈ X1 if there exist functions u2(x2), ..., um(xm) such that∑m

i=2 ui (xi ) ≥ s(x1, ..., xm) with equality on S .

We say s is twisted on splitting sets if whenever
S ⊆ X2 × X3...× Xm is a splitting set at x1,

(x2, ..., xm) 7→ Dx1s(x1, x2, ..., xm)

is injective on S .

Kim-P (2013) : If µ1 is absolutely continuous with respect to
Lebesgue measure and s is twisted on splitting sets, the stable
match γ is unique and pure.
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Example: One dimensional case

m = 2: Recall classical (two marginal, one dimension)

Spence-Mirrlees condition (supermodularity): ∂2s
∂x1∂x2

> 0 –
leads to positive assortative matching.

∂2s
∂x1∂x2

< 0 (submodularity) is also twisted – leads to negative
assortative matching.

When x1, x2, ..., xm ∈ R, twist on splitting sets is essentially
equivalent to:

∂2s

∂xi∂xj
[
∂2s

∂xk∂xj
]−1

∂2s

∂xk∂xi
> 0

for all distinct i , j , k .

Satisfied for supermodular costs: ∂2s
∂xi∂xj

> 0 for all i 6= j .

These surpluses were studied by Carlier (2003) – lead to
positive assortative matching.

Violated for submodular costs: ∂2s
∂xi∂xj

< 0 for all i 6= j .
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Example: Hedonic surplus

s(x1, x2, ..., xm) = maxy
∑m

i=1 bi (xi , y)

Motivation (Carlier-Ekeland (2010),
Chiappori-McCann-Nesheim (2010)): agents of type xi have a
surplus bi (xi , y) for a particular contract y - total joint utility
s comes from maximizing the sum over all feasible contracts.

Under mild conditions, s satisfies twist on splitting sets.

Ex. s(x1, x2, ..., xm) =
∑m

i,j=1 xj · xi (Gangbo and Swiech
(1998)).
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Example: symmetric costs

Assume s(x1, x2, ..., xm) is symmetric under permutations of
it’s arguments.

Motivation: (Chiappori-Galichon-Salanie (2012)) roommate
problems.

Also relevant in physics (Cotar-Friesecke-Kluppelberg (2011) ,
Buttazzo-De Pascale-Gori-Giorgi (2012)) and functional
analysis (Ghoussoub-Moameni (2013))

For m ≥ 3, s violates the twist on splitting sets condition
unless the diagonal {(x , x , ....x)} is a splitting set.

When all the µi are the same, the only pure, symmetric
matching is concentrated on the diagonal.

For s(x1, ...xm) = −
∑m

i 6=j xi · xj , measures supported on the
surface {

∑m
i=1 xi = 0} are optimal for their marginals.
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