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Investments and matching

agents from both sides of a large two-sided economy have to make costly
investments before they compete for partners in a matching market

Examples

individuals and firms

sellers and buyers

Main features

investments affect the surplus/gains from trade that can be generated in
future matches

agents cannot bargain and contract with potential partners before they invest

when agents choose investments, they take into account their costs and the
payoff they expect to get in the matching market

the prospect of competition provides incentives to invest
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Investments and matching

How efficient are investments and matching patterns from an ex-ante
perspective?

for example, search frictions (Acemoglu 1996) or asymmetric information
(Mailath, Postlewaite and Samuelson 2013) in the matching market distort
investment incentives

Focus of the present paper

economies with a competitive (continuum, frictionless) one-to-one matching
market

consequences of market incompleteness
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A sketch of the model

continuum of heterogeneous buyers and sellers with quasi-linear utility
functions: each agent is characterized by a cost type

Two stages

at stage 1, all agents simultaneously and non-cooperatively choose
investments

at stage 2, agents compete in a one-to-one matching market

sunk investments determine the match surplus
the market is an assignment game: matching is frictionless and utility is
transferable ⇒ based on their investments, buyers and sellers match efficiently

Cole, Mailath and Postlewaite (2001a)

investments are one-dimensional and match surplus is supermodular

cost types are one-dimensional and cost functions are submodular
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In an ex-post contracting equilibrium, any investment must “best-reply” to the
correctly anticipated trading possibilities and payoffs in the endogenous market

investment choices are not directed by a complete system of Walrasian
payoffs for all ex-ante possible investments: there are market payoffs only for
investments that exist at stage 2

an agent who deviates to an otherwise non-existent investment can match
with any marketed investment from the other side, leave the market payoff to
the partner and keep the remaining surplus
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Equilibrium concept and results of Cole, Mailath and

Postlewaite (2001a)

In an ex-post contracting equilibrium, any investment must “best-reply” to the
correctly anticipated trading possibilities and payoffs in the endogenous market

investment choices are not directed by a complete system of Walrasian
payoffs for all ex-ante possible investments: there are market payoffs only for
investments that exist at stage 2

an agent who deviates to an otherwise non-existent investment can match
with any marketed investment from the other side, leave the market payoff to
the partner and keep the remaining surplus

Cole, Mailath and Postlewaite (2001a)

an efficient equilibrium always exists

two examples of inefficient equilibria with coordination failures
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Contributions (I)

Motivation

the sets of possible investments are multi-dimensional in most interesting
environments

multi-dimensional cost types are needed to model ex-ante heterogeneity

general forms of surplus and cost functions

I verify that efficient ex-post contracting equilibria exist in a general assignment
game framework

Main contribution

I shed light on what enables/constrains/precludes the existence of
inefficient equilibria, both in environments with one-dimensional and with
multi-dimensional heterogeneity
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Contributions (II)

Two kinds of inefficiency

inefficiency of joint investments

mismatch of buyers and sellers from an ex-ante perspective

cannot occur in the “1-d supermodular framework,” where the matching of
cost types must be positively assortative in any equilibrium

Main contributions

new sufficient condition for ruling out inefficiency of joint investments:
“absence of technological multiplicity”

analysis of mismatch in multi-dimensional environments without
technological multiplicity

examples, require some insights from optimal transport

new insights about the role of ex-ante heterogeneity for ruling out
inefficiencies in environments with technological multiplicity
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at stage 1, all agents simultaneously and non-cooperatively choose
investments

at stage 2, agents compete for partners

9 / 33



Match surplus, costs and ex-ante heterogeneity

10 / 33



Match surplus, costs and ex-ante heterogeneity

choosing an investment means choosing an attribute (deterministic
investment technology)

the sets of possible attribute choices are X (for buyers) and Y (for sellers)
generic elements are denoted x and y

10 / 33



Match surplus, costs and ex-ante heterogeneity

choosing an investment means choosing an attribute (deterministic
investment technology)

the sets of possible attribute choices are X (for buyers) and Y (for sellers)
generic elements are denoted x and y

gross match surplus v(x , y)

10 / 33



Match surplus, costs and ex-ante heterogeneity

choosing an investment means choosing an attribute (deterministic
investment technology)

the sets of possible attribute choices are X (for buyers) and Y (for sellers)
generic elements are denoted x and y

gross match surplus v(x , y)

agents are ex-ante heterogeneous

characterized by cost types b ∈ B and s ∈ S

cost functions cB(x , b) and cS(y , s)

10 / 33



Match surplus, costs and ex-ante heterogeneity

choosing an investment means choosing an attribute (deterministic
investment technology)

the sets of possible attribute choices are X (for buyers) and Y (for sellers)
generic elements are denoted x and y

gross match surplus v(x , y)

agents are ex-ante heterogeneous

characterized by cost types b ∈ B and s ∈ S

cost functions cB(x , b) and cS(y , s)

B, S , X and Y are compact metric spaces

v : X × Y → R+, cB : X × B → R+ and cS : Y × S → R+ are continuous

for simplicity: unmatched agents create zero surplus

10 / 33



Match surplus, costs and ex-ante heterogeneity

choosing an investment means choosing an attribute (deterministic
investment technology)

the sets of possible attribute choices are X (for buyers) and Y (for sellers)
generic elements are denoted x and y

gross match surplus v(x , y)

agents are ex-ante heterogeneous

characterized by cost types b ∈ B and s ∈ S

cost functions cB(x , b) and cS(y , s)

B, S , X and Y are compact metric spaces

v : X × Y → R+, cB : X × B → R+ and cS : Y × S → R+ are continuous

for simplicity: unmatched agents create zero surplus

the heterogeneous ex-ante populations of buyers and sellers are described by
probability measures µB on B and µS on S

10 / 33



Match surplus, costs and ex-ante heterogeneity

choosing an investment means choosing an attribute (deterministic
investment technology)

the sets of possible attribute choices are X (for buyers) and Y (for sellers)
generic elements are denoted x and y

gross match surplus v(x , y)

agents are ex-ante heterogeneous

characterized by cost types b ∈ B and s ∈ S

cost functions cB(x , b) and cS(y , s)

B, S , X and Y are compact metric spaces

v : X × Y → R+, cB : X × B → R+ and cS : Y × S → R+ are continuous

for simplicity: unmatched agents create zero surplus

the heterogeneous ex-ante populations of buyers and sellers are described by
probability measures µB on B and µS on S

µB , µS , v , cB and cS are common knowledge at stage 1
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Stage 2: The matching market

Matching is frictionless, utility is transferable: the matching market is a
continuum assignment game, described by

the match surplus function v

the distributions of buyer and seller attributes that result from agents’ sunk
investments: µX on X and µY on Y

The possible matchings of µX and µY are the measures π2 on X × Y with
marginal measures µX and µY : π2 ∈ Π(µX , µY )
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2

π∗

2 ∈ Π(µX , µY ) attains supπ2∈Π(µX ,µY )

∫

v dπ2

core payoff functions ψ∗

X : Supp(µX ) → R and ψ∗

Y : Supp(µY ) → R
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2 )
for all (x , y) ∈ Supp(µX )× Supp(µY ): ψ

∗

Y (y) + ψ∗

X (x) ≥ v(x , y)

Stable outcomes exist (Gretzky, Ostroy and Zame 1992; Villani 2009)

stable outcomes (π∗

2 , ψ
∗

X , ψ
∗

Y ) are equivalent to competitive equilibria
(Shapley and Shubik 1971; Gretzky, Ostroy and Zame 1992)

ψ∗

X and ψ∗

Y are continuous
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Stage 1: Best replies

In ex-post contracting equilibrium, agents’ attribute choices must “best-reply”
to the correctly anticipated trading possibilities and the equilibrium outcome
(π∗

2 , ψ
∗

X , ψ
∗

Y ) of the endogenous market (µX , µY , v) that results from others’ sunk
investments. In particular,

if x ∈ Supp(µX ) is an equilibrium investment of type b, then x must satisfy

ψ∗

X (x)− cB(x , b) = max
x′∈X ,y∈Supp(µY )

(v(x ′, y)− ψ∗

Y (y)− cB(x
′, b))

if y ∈ Supp(µY ) is an equilibrium investment of type s, then y must satisfy

ψ∗

Y (y)− cS (y , s) = max
y ′∈Y ,x∈Supp(µX )

(v(x , y ′)− ψ∗

X (x)− cS (y
′, s))
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Ex-post contracting equilibrium
Formal definition

Definition

An ex-post contracting equilibrium is a tuple ((β, σ, π1), (π
∗

2 , ψ
∗

X , ψ
∗

Y )), in which
(β, σ, π1) is a regular investment profile and (π∗

2 , ψ
∗

X , ψ
∗

Y ) is a stable and feasible
bargaining outcome for (µX , µY , v), such that for all (b, s) ∈ Supp(π1) it holds:

ψ∗

X (β(b, s))− cB(β(b, s), b)

= max
x′∈X ,y∈Supp(µY )

(v(x ′, y)− ψ∗

Y (y)− cB(x
′, b)) =: rB (b),

ψ∗

Y (σ(b, s))− cS (σ(b, s), s)

= max
y ′∈Y ,x∈Supp(µX )

(v(x , y ′)− ψ∗

X (x)− cS(y
′, s)) =: rS (s).
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The maximal net surplus that a pair (b, s) can generate is

w(b, s) = max
x∈X ,y∈Y

v(x , y) − cB(x , b)− cS (y , s)

jointly optimal attributes (x∗(b, s), y∗(b, s)) exist for all (b, s)

w is continuous

The stable outcomes (π∗

1 , ψ
∗

B , ψ
∗

S ) of the assignment game (µB , µS ,w) provide the
benchmark of ex-ante efficiency

they describe how agents would match and divide net surplus if buyers and
sellers could bargain in a frictionless market and write complete contracts
before they invest, so that partners choose jointly optimal attributes
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Efficient equilibria

Result

Every stable outcome (π∗

1 , ψ
∗

B , ψ
∗

S ) of (µB , µS ,w) can be supported by an ex-post
contracting equilibrium. In particular, an efficient equilibrium exists.
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the matching of cost types that is associated with the equilibrium investment
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Two manifestations of inefficiency

Buyers and sellers may be mismatched from an ex-ante perspective

the matching of cost types that is associated with the equilibrium investment
behavior and the matching of attributes is not efficient for the benchmark
assignment game (µB , µS ,w)

There may be inefficiency of joint investments

agents’ attributes are not jointly optimal in a strictly positive mass of
matches that arise in equilibrium

17 / 33
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Full appropriation games

Consider the following complete information, “full appropriation” (FA) game
between a buyer of type b and a seller of type s

strategy spaces are X and Y

payoffs are v(x , y) − cB(x , b) and v(x , y)− cS (y , s)

Lemma
The attributes of a buyer of type b and a seller of type s who are matched in
equilibrium must be a Nash equilibrium (NE) of the FA game between them.
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Technological multiplicity

Proposition

Assume that for all b ∈ Supp(µB) and s ∈ Supp(µS), the FA game between b and
s has a unique NE. Then ex-post contracting equilibria cannot feature inefficiency
of joint investments.

Note

jointly optimal attributes x∗(b, s) and y∗(b, s) are always a NE of the FA
game between b and s, as they maximize v(x , y)− cB(x , b)− cS (y , s)

Definition
An environment displays technological multiplicity if FA games have more than
one pure strategy NE for some (b, s) ∈ Supp(µB)× Supp(µS ).
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Let X \ {x∅},Y \ {y∅},B \ {b∅}, S \ {s∅} ⊂ R+. Assume that v is strictly
supermodular in (x , y), cB is strictly submodular in (x , b), and cS is strictly
submodular in (y , s).

Lemma
Let Condition 1dS hold. Then the induced matching of buyer and seller cost types
is positively assortative in every ex-post contracting equilibrium. Mismatch is
impossible.

equilibrium attribute choices are increasing in type

an equilibrium attribute x of type b must belong to
argmaxx′∈X

(

maxy∈Supp(µY )(v(x
′, y) − ψ∗

Y (y))− cB(x
′, b)

)

the matching of attributes is positively assortative
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Problem: beyond the 1-d supermodular framework, it is a priori unclear which
matchings of buyers and sellers can occur in equilibrium

An intuition for cases without technological multiplicity

equilibrium partners have jointly optimal attributes, and (x∗(b, s), y∗(b, s)) is
continuous on Supp(µB)× Supp(µS)

any attribute choice displays the preparation for the intended match, but it
also strongly reflects the agent’s own type

marketed attributes x∗(b, s) are attractive targets for deviations by agents s ′

not too different from s, similarly for y∗(b, s) and buyers b′

profitable deviations at stage 1 must be ruled out by sufficiently high net
equilibrium payoffs

these requirements constrain mismatch if there is some differentiation of
agents ex-ante
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Mismatch and its constraints in a 2-d bilinear model (I)

The standard bilinear model

Let Supp(µB ) \ {b∅} ⊂ R
2
+ \ {0}, Supp(µS ) \ {s∅} ⊂ R

2
+ \ {0} and

X \ {x∅} = Y \ {y∅} = R
2
+. Surplus and costs are given by

v(x , y) = x · y = x1y1 + x2y2, cB(x , b) =
x41
b2
1
+

x42
b2
2
and cS(y , s) =

y4
1

s21
+

y4
2

s22
.
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x41
b2
1
+

x42
b2
2
and cS(y , s) =

y4
1

s21
+

y4
2

s22
.

FA games have unique non-trivial NE, given by

(x∗(b, s), y∗(b, s)) =
1

2

((

b
3
4
1 s

1
4
1 , b

3
4
2 s

1
4
2

)

,
(

b
1
4
1 s

3
4
1 , b

1
4
2 s

3
4
2

))
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The standard bilinear model

Let Supp(µB ) \ {b∅} ⊂ R
2
+ \ {0}, Supp(µS ) \ {s∅} ⊂ R

2
+ \ {0} and

X \ {x∅} = Y \ {y∅} = R
2
+. Surplus and costs are given by

v(x , y) = x · y = x1y1 + x2y2, cB(x , b) =
x41
b2
1
+

x42
b2
2
and cS(y , s) =

y4
1

s21
+

y4
2

s22
.

FA games have unique non-trivial NE, given by

(x∗(b, s), y∗(b, s)) =
1

2

((

b
3
4
1 s

1
4
1 , b

3
4
2 s

1
4
2

)

,
(

b
1
4
1 s

3
4
1 , b

1
4
2 s

3
4
2

))

w(b, s) = 1
8(b1s1 + b2s2)
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Example 1

Let µS = aHδ(sH ,sH) + (1− aH)δ(sL,sL), where 0 < sL < sH and 0 < aH < 1.
Moreover, µB = a1δ(b′

1,0)
+ a2δ(0,b′

2)
+ (1− a1 − a2)δb∅ , where 0 < a1, a2, b

′

1, b
′

2

and a1 + a2 < 1. Finally, let b′1 > b′2 and aH < a1 + a2.

b2, s2

b1, s1

b
(sL, sL)

b

(b′

1, 0)

b(0, b′

2)

b
(sH , sH)
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b
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w((b1, b2), (s1, s1)) =
1
8
(b1 + b2)s1

the ex-ante efficient matching is

positively assortative in s1 and b1 + b2

depicted case: aH < a1

attributes in the endogenous market:

x∗((b′

1, 0), (sH , sH)), x
∗((b′

1, 0), (sL, sL)),

x∗((0, b′

2), (sL, sL)), y
∗((b′

1, 0), (sH , sH)),

y∗((b′

1, 0), (sL, sL)), y
∗((0, b′

2), (sL, sL))

e.g. x∗((b′

1, 0), (sH , sH)) =

(

1
2
b
′
3
4

1 s
1
4
H , 0

)

,

y∗((b′

1, 0), (sH , sH)) =

(

1
2
b
′
1
4

1 s
3
4
H , 0

)
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Mismatch and its constraints in a 2-d bilinear model (III)

Claim
Consider the environment of Example 1. If aH < a2, then there is exactly one

additional, mismatch inefficient equilibrium if and only if 2
3
b′

2

b′

1
≥

(

sH
sL

) 2
3
−1

sH
sL

−1
.

Otherwise, only the ex-ante efficient equilibrium exists.

b2, s2

b1, s1

b
(sL, sL)

b

(b′

1, 0)

b(0, b′

2)

b
(sH , sH)
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2), (sL, sL)), y
∗((b′

1, 0), (sL, sL)),

y∗((0, b′

2), (sH , sH)), y
∗((0, b′

2), (sL, sL))

(sH , sH)-sellers have no incentive to

deviate by investing optimally for a

match with x∗((b′

1, 0), (sL, sL)) if and

only if the condition of the Claim holds
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Mismatch and its constraints in a 2-d bilinear model (IV)

Example 2

Supp(µS ) = {(s1, s1)|sL ≤ s1 ≤ sH}, for some sL < sH . µB is compactly supported
in the union of (R+ \ {0})× {0}, {0} × (R+ \ {0}) and {b∅}. The restrictions of
µB to (R+ \ {0})× {0} and {0} × (R+ \ {0}) have interval support.

b2, s2

b1, s1Supp(µB)

Supp(µB)

Supp(µS)
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Mismatch and its constraints in a 2-d bilinear model (IV)

Example 2

Supp(µS ) = {(s1, s1)|sL ≤ s1 ≤ sH}, for some sL < sH . µB is compactly supported
in the union of (R+ \ {0})× {0}, {0} × (R+ \ {0}) and {b∅}. The restrictions of
µB to (R+ \ {0})× {0} and {0} × (R+ \ {0}) have interval support.

b2, s2

b1, s1Supp(µB)

Supp(µB)

Supp(µS)

result: the only ex-post contracting

equilibrium is the ex-ante efficient one

cost types are matched positively

assortatively in s1 and b1 + b2
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Remarks
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equilibria exist

26 / 33



Mismatch and its constraints in a 2-d bilinear model (V)

Remarks

in Examples 1 and 2, results from the theory of assortative matching can be
used to identify the efficient matching and to evaluate whether inefficient
equilibria exist

this is not feasible in more complex environments

26 / 33



Mismatch and its constraints in a 2-d bilinear model (V)

Remarks

in Examples 1 and 2, results from the theory of assortative matching can be
used to identify the efficient matching and to evaluate whether inefficient
equilibria exist

this is not feasible in more complex environments

Characterization from optimal transport

a matching π1 ∈ Π(µB , µS ) is efficient if and only if it is concentrated on a
w -cyclically monotone set

Definition
A set A ⊂ B × S is called w-cyclically monotone if for all K ∈ N,
(b1, s1), ..., (bK , sK ) ∈ A and sK+1 = s1, the following inequality is satisfied.

K
∑

i=1

w(bi , si) ≥

K
∑

i=1

w(bi , si+1).
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Mismatch and its constraints in a 2-d bilinear model (VI)

Theorem (Villani)

Let Supp(µB ), Supp(µS ) ⊂ (R+ \ {0})2 be closures of bounded, open and
uniformly convex sets with smooth boundaries. Assume that µB and µS admit
smooth, strictly positive densities on Supp(µB) and Supp(µS ). Then, the stable
outcomes (π∗

1 , ψ
∗

B , ψ
∗

S ) of (µB , µS ,w) satisfy:

ψ∗

B and ψ∗

S are smooth, and unique up to an additive constant,

π∗

1 is unique. It is given by a smooth bijection T ∗ : Supp(µB) → Supp(µS )
satisfying 1

8T
∗(b) = ∇ψ∗

B (b).

b2

b1

Supp(µB)

s2

s1

Supp(µS)
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satisfying 1

8T
∗(b) = ∇ψ∗

B (b).

b2

b1

Supp(µB)

s2

s1

Supp(µS)

T ∗
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Mismatch and its constraints in a 2-d bilinear model (VII)

Theorem

Consider the environment of Theorem (Villani), and assume in addition that
(

s1
b1

b2
s2
+ s2

b2

b1
s1

)

< 32 for all b ∈ Supp(µB), s ∈ Supp(µS ). If

T : Supp(µB) → Supp(µS ) is a smooth matching of buyer and seller types that is
compatible with an ex-post contracting equilibrium, then T is ex-ante efficient.
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8T (b), where rB is the buyer net payoff in the ex-post

contracting equilibrium

use the equilibrium conditions to show that rB must be convex

hence, the matching T of buyer and seller types associated with the
equilibrium is concentrated on the subdifferential of a convex function

for bilinear w , this is a w -cyclically monotone set ⇒ T is efficient
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Environments with technological multiplicity
An under-investment example à la (CMP) (I)
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Environments with technological multiplicity
An under-investment example à la (CMP) (I)

Example 3

Let v(x , y) = max
(

xy , 12x
3
2 y

3
2

)

, cB(x , b) =
x4

b2 and cS (y , s) =
y4

s2
. µB and µS

have interval support. For simplicity, µB=µS .
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, cB(x , b) =
x4

b2 and cS (y , s) =
y4

s2
. µB and µS

have interval support. For simplicity, µB=µS .

The efficient equilibrium

x

bb12

v has two regimes of complementarity

x∗(b, s = b) and y∗(b, s = b) jump

from b
2
to 3b2

16
at b = b12
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Example 3
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2 y

3
2

)

, cB(x , b) =
x4

b2 and cS (y , s) =
y4

s2
. µB and µS

have interval support. For simplicity, µB=µS .

The efficient equilibrium

x

bb12

v has two regimes of complementarity

x∗(b, s = b) and y∗(b, s = b) jump

from b
2
to 3b2

16
at b = b12

however, attributes
(

b
2
, b
2

)

remain a

NE of the FA game between b and

s = b for b > b12
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Environments with technological multiplicity
An under-investment example à la (CMP) (II)
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Environments with technological multiplicity
An under-investment example à la (CMP) (II)

Example 3

Let v(x , y) = max
(

xy , 12x
3
2 y

3
2

)

, cB(x , b) =
x4

b2 and cS (y , s) =
y4

s2
. µB and µS

have interval support. For simplicity, µB=µS .

The under-investment equilibrium

x

bb12

this enables an equilibrium in which

types with lower costs than the

“indifference type” b12 under-invest,

unless...
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Example 4

Let v(x , y) = max
(

x
1
10 y

1
10 , 32x

3
5 y

3
5 , x

8
5 y

8
5
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x4

b2 and cS (y , s) =
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. µB

and µS have interval support. For simplicity, µB=µS .
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8
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, cB(x , b) =
x4

b2 and cS (y , s) =
y4

s2
. µB

and µS have interval support. For simplicity, µB=µS .

The efficient equilibrium

x

bb12 b23

v has three regimes of

complementarity
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Environments with technological multiplicity
Simultaneous under- and over-investment: the case of missing middle sectors (II)
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Environments with technological multiplicity
Simultaneous under- and over-investment: the case of missing middle sectors (II)

Example 4

Let v(x , y) = max
(

x
1
10 y

1
10 , 32x

3
5 y

3
5 , x

8
5 y

8
5

)

, cB(x , b) =
x4

b2 and cS (y , s) =
y4

s2
. µB

and µS have interval support. For simplicity, µB=µS .

An inefficient equilibrium

x

bb12 b13 b23

even extreme exogenous

heterogeneity does not rule out

the inefficient equilibrium
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Conclusion

Take home messages

technological multiplicity is the key source of potential inefficiencies

even extreme ex-ante heterogeneity may be insufficient for ruling out
inefficient equilibria
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