Mean Field Games and Stochastic Growth Modeling

Minyi Huang

School of Mathematics and Statistics Carleton University, Ottawa

Conference on Optimization, Transportation and Equilibrium in Economics Fields Institute, September 2014

Mean field games and stochastic growth

Background

- Mean field games: Competitive decision with a large no. of agents
 - $\blacktriangleright\,$ "An interacting N-particle system". Then let $N\to\infty$
 - Caines, Huang, and Malhamé (03, 06, ...); Lasry and Lions (06, 07, ...); an overview by Bensoussan et. al. (2012); Buckdahn et. al. (2011); a survey by Gomes and Saúde (2013)
 - Early ideas in economic literature: Jovanovic and Rosenthal (Anonymous sequential games, 1988); continuum population modeling, finite MDP
- Stochastic growth theory
 - Optimal control of a whole sector of an economy
 - The pioneering work (Brock and Mirman, J. Econ. Theory, 1972); a nice survey (Olson and Roy, 2006)
 - Continuous time (Merton, 1975)
 - More generally: Nash games of N producers (e.g., Amir, Games Econ. Behav., 1996). Example: several firms in the fishery industry

Mean field games and stochastic growth

The start of growth theory: deterministic root

Frank Ramsey (1903-1930)

▶ F. P. Ramsey. A mathematical theory of saving. *The Economic Journal*, vol. 38, no. 152, pp. 543-559, 1928.

Mean field games and stochastic growth

Early motivation in engineering

- N wireless users; x_i: channel gain (in dB); p_i: power.
 Continuous time channel modeling: Charalambous et al (1999)
- objective for SIR (signal-to-interference ratio):

$$\frac{e^{x_i}p_i}{\frac{\alpha}{N}\sum_{j\neq i}e^{x_j}p_j+\sigma^2}\approx \gamma_{\text{target}}$$

 σ^2 : thermal noise; $\frac{1}{N}$ is due to using a spreading gain whose length is proportional to the user number

Dynamic game

$$dx_{i} = a(\mu - x_{i})dt + CdW_{i}$$

$$dp_{i} = u_{i}dt$$

$$J_{i} = E \int_{0}^{T} \left\{ \left[e^{x_{i}}p_{i} - \gamma_{\text{target}}(\frac{\alpha}{N}\sum_{j\neq i}e^{x_{j}}p_{j} + \sigma^{2}) \right]^{2} + ru_{i}^{2} \right\} dt$$

Mean field games and stochastic growth

Early motivation from engineering

Nonlinear dynamic game

$$dx_{i} = a(\mu - x_{i})dt + CdW_{i}$$

$$dp_{i} = u_{i}dt$$

$$J_{i} = E \int_{0}^{T} \left\{ \left[e^{x_{i}}p_{i} - \gamma_{\text{target}}(\frac{\alpha}{N}\sum_{k\neq i}e^{x_{k}}p_{k} + \sigma^{2}) \right]^{2} + ru_{i}^{2} \right\} dt$$

Linear-Quadratic-Gaussian mean field game theory

$$dx_{i} = (a_{i}x_{i} + bu_{i})dt + CdW_{i}$$
$$J_{i} = E \int_{0}^{T} \left\{ \left[x_{i} - \gamma \left(\frac{1}{N} \sum_{j \neq i} x_{j} + \eta\right) \right]^{2} + ru_{i}^{2} \right\} dt$$

Even such a simple model is interesting enough! (HCM'03, 04, 07)

Mean field games and stochastic growth

Early motivation from engineering

Linear-Quadratic-Gaussian mean field game theory

$$dx_i = (a_i x_i + bu_i)dt + CdW_i$$

$$J_i = E \int_0^T \{ [x_i - \gamma(\frac{1}{N}\sum_{j \neq i} x_j + \eta)]^2 + ru_i^2 \} dt$$

Fundamental issues:

- Existing theory yields Nash strategies of the form $u_i(t, x_1, \ldots, x_N)$
- Informational requirement is too high!
- Hope to design strategies of the form

 $u_i(t, \text{``local state''} x_i, \text{``macoroscopic effect''})$

► How well such decentralized strategies perform in the original *N* player game?

Mean field games and stochastic growth

Mean field game: one against the MASS

• Everyone plays against m_t (freeze it!), giving optimal responses

- m_t can appear as a measure, first order statistic (mean), etc.
- The optimal responses regenerate m_t when no. of players $N \to \infty$

Mean field games and stochastic growth

The basic framework of MFGs

$P_{0} - Game \text{ with } N \text{ players}$ $dx_{i} = f(x_{i}, u_{i}, \delta_{x}^{(N)})dt + \sigma$ $J_{i}(u_{i}, u_{-i}) = E \int_{0}^{T} I(x_{i}, u_{i})$ $\delta_{x}^{(N)} : empirical \ distribution$	$\begin{array}{lll} & & \text{sc}(\cdots) dw_i & & \text{solution} \\ & & & \ddots \\ & & & & & & \\ & & & & & \\ & & & &$	Coupled Hamilton-Jacobi-Bellman system $u_i = u_i(t, x_1,, x_N), 1 \le i \le N$ Centralized strategy!
↓construct	performance	$\downarrow N ightarrow \infty$
$\begin{cases} P_{\infty} - \text{Limiting problem} \\ dx_i = f(x_i, u_i, \mu_t) dt + \alpha \\ \overline{J}_i(u_i) = E \int_0^T I(x_i, u_i, \mu_t) \\ Freeze \ \mu_t, \text{ as approx. } \end{cases}$	$\begin{array}{ll} & 1 \ player \\ \sigma(\cdots) dw_i & \xrightarrow{solution} \\ s_t) dt & \xrightarrow{- \rightarrow} \\ of \ \delta_x^{(N)} \end{array}$	$\begin{cases} \hat{u}_{i}(t, x_{i}) : optimal response \\ HJB (v(T, \cdot) given) : \\ -v_{t} = \inf_{u_{i}}(f^{T}v_{x_{i}} + l + \frac{1}{2}Tr[\sigma\sigma^{T}v_{x_{i}x_{i}}]) \\ Fokker-Planck-Kolmogorov : \\ p_{t} = -div(fp) + \sum((\frac{\sigma\sigma^{T}}{2})_{jk}p)_{x_{i}^{j}x_{i}^{k}} \\ Coupled via \mu_{t} (w. density p_{t}, p_{0} given) \end{cases}$

- The consistency based approach (red) is more popular; related to ideas in statistical physics (McKean-Vlasov equation), FPK may appear as MV-SDE
- When a major player or common noise appears, new tools (stochastic mean field dynamics, master equation, etc) are needed

Mean field games and stochastic growth

Further major issues

- Major-minor players instead of peers in the mean field game
 - Motivation: institutional traders, large corporations, power generators (with respect to residential consumers), etc
- Mean field teams (cooperative social optimization) instead of games
- Robustness with model uncertainty

Mean field games and stochastic growth

Application of MFGs to economic growth, finance, ...

- ▶ Guéant, Lasry and Lions (2011): human capital optimization
- Lucas and Moll (2011): Knowledge growth and allocation of time (JPE in press)
- Carmona and Lacker (2013): Investment of n brokers

.....

- ► Espinosa and Touzi (2013): Optimal investment with relative performance concern (depending on $\frac{1}{N-1}\sum_{i\neq} X_i$)
- Chan and Sircar (2014): Bertrand and Cournot MFGs (coupling via average prices or quantities)
- Jaimungal (2014): Optimal execution with major-minor agents in trading (liquidation).

Mean field games and stochastic growth

Organization of the talk

- Discrete time
 - We extend the neo-classical growth model (pioneered by Brock and Mirman 1972; see a comprehensive survey by Olson and Roy, 2006) to the mean field setting
- Continuous time
 - The classical SDE modeling by Merton (1975)
 - Stochastic depreciation: Walde (J. Econ. Dyn. Control, 2011); Feicht and Stummer (2010)
 - Our mean field modeling is based on the above works (Huang and Nguyen, to be presented at IEEE CDC'14)

Classical stochastic growth model: Review

The one-sector economy at stage t involves two basic quantities:

► κ_t : the capital stock (used for production); c_t : consumption The next stage output y_{t+1} :

$$y_{t+1}=f(\kappa_t,r_t),\quad t=0,1,\ldots,$$

f(·, ·): production function; *r_t*: random disturbance; *y*₀: given
 κ_t + *c_t* = *y_t*

 $\frac{\text{Objective: maximize the utility functional } E \sum_{t=0}^{\infty} \rho^t \nu(c_t);}{\nu(c_t): \text{ utility from consumption, usually concave on } [0,\infty)}$

Brock and Mirman (J. Econ. Theory, 1972) pioneered stochastic growth theory.

Notation in the mean field model

Keep track of the notation (for the main part):

u _t :	control (allocation for capital stock	
X_t^i :	state (production output)	
N:	number of players in the game	
c _t ⁱ :	consumption	
$V_i(x, t)$:	value function	
G(p, W), g:	growth coefficient in production	
<i>W</i> :	white noise	
<i>p</i> :	aggregate capital stock	
γ :	HARA utility exponent	

Mean field production dynamics of N agents

- X_t^i : output (or wealth) of agent i, $1 \le i \le N$
- *u*ⁱ_t ∈ [0, Xⁱ_t]: capital stock *c*ⁱ_t = Xⁱ_t *u*ⁱ_t: consumption; *W*ⁱ_t: random disturbance *u*^(N)_t = (1/N) ∑^N_{j=1} *u*^j_t: aggregate capital stock

The next stage output, measured by the unit of capital, is

$$X_{t+1}^{i} = G(u_{t}^{(N)}, W_{t}^{i})u_{t}^{i}, \qquad t \ge 0,$$
 (3.1)

Motivation for the mean field production dynamics:

- Use $u_t^{(N)}$ as a proxy of the macroscopic behavior of the population.
- Congestion effect Barro and Sala-I-Martin (Rev. Econ. Stud., 1992); Liu and Turnovsky (J. Pub. Econ., 2005). They consider static models of a finite number of firms.

The utility functional

The utility functional is

$$J_i(u^i, u^{-i}) = E \sum_{t=0}^T \rho^t v(X_t^i - u_t^i),$$

▶
$$\rho \in (0, 1]$$
: the discount factor
▶ $c_t^i = X_t^i - u_t^i$: consumption, $u^{-i} = (\cdots, u^{i-1}, u^{i+1}, \cdots)$

We take the HARA utility

$${m v}(z)=rac{1}{\gamma}z^\gamma, \quad z\ge 0, \qquad \gamma\in (0,1).$$

Assumptions

(A1) (i) Each sequence $\{W_t^i, t \in \mathbb{Z}_+\}$ consists of i.i.d. random variables with support D_W and distribution function F_W . The N sequences $\{W_t^i, t \in \mathbb{Z}_+\}$, i = 1, ..., N are i.i.d. (ii) $\{X_0^i, 1 \le i \le N\}$ are i.i.d. positive r.v.s with distribution F_{X_0} and mean m_0 , which are also independent of the N noise sequences.

(A2) (i) The function $G: [0, \infty) \times D_W \to [0, \infty)$ is continuous; (ii) for a fixed $w \in D_W$, G(z, w) is a decreasing function of $z \in [0, \infty)$.

(A3) (iii) $EG(0, W) < \infty$ and EG(p, W) > 0 for each $p \in [0, \infty)$.

(A2) implies congestion effect: when the aggregate investment level increases, the production becomes less efficient.

Example. Suppose $G(z, w) = \frac{\alpha w}{1 + \delta z^{\eta}}$, where $\alpha > 0, \delta > 0, \eta > 0$ are parameters.

How to design strategies?

 Procedures to find decentralized strategies in the mean field game.

Step 1: mean field limit

Now agent *i* considers the optimal control problem with dynamics

$$X_{t+1}^{i} = G(p_t, W_t^{i}) u_t^{i}, \qquad t \ge 0,$$
 (3.2)

where $u_t^i \in [0, X_t^i]$. Note $G(u_t^{(N)}, W_t^i) \to G(p_t, W_t^i)$.

The utility functional is now written as

$$\bar{J}_i(u^i,(p_t)_0^{T-1},0) = E \sum_{t=0}^T \rho^t v(X_t^i - u_t^i), \qquad (3.3)$$

Step 2: optimal control (for the limiting problem)

Dynamic programming equation with t = 0, 1, ..., T - 1:

$$V_i(x,t) = \max_{0 \le u_i \le x} \left[v(x-u_i) + \rho E V_i(G(p_t, W_t^i)u_i, t+1) \right],$$

Denote $\Phi(z) = \rho EG^{\gamma}(z, W)$ and $\phi(z) = \Phi^{\frac{1}{\gamma-1}}(z)$.

Theorem (i) The value function $V_i(x, t) = \frac{1}{\gamma} D_t^{\gamma-1} x^{\gamma}$, where

$$D_t = rac{\phi(p_t)D_{t+1}}{1 + \phi(p_t)D_{t+1}}, \quad t \le T - 1, \quad D_T = 1.$$
 (3.4)

(ii) The optimal control has the feedback form

$$u_t^i = \frac{X_t^i}{1 + \phi(p_t)D_{t+1}}, \quad t \le T - 1, \quad u_T^i = 0.$$
 (3.5)

Step 3: consistency

For the closed-loop system, by symmetry, $\lim_{N\to\infty} Eu_t^{(N)} = Eu_t^i =: \Lambda_t(p_0, \ldots, p_{T-1})$, which should coincide with p_t .

Define the operator $\Lambda = (\Lambda_0, \dots, \Lambda_{T-1})$. Fixed point equation:

$$(p_0,\ldots,p_{T-1})=\Lambda(p_0,\ldots,p_{T-1}).$$

Theorem Λ has a fixed point in a rectangle region.

Proof. Brouwer fixed point theorem.

Construct decentralized strategies

By Steps 1-3, solve $(p_t)_0^{T-1}$, and further determine $(D_t)_0^T$.

Then denote

where

$$X_{t+1}^i = G(\check{u}_t^{(N)}, W_t^i)\check{u}_t^i, \ t \geq 0.$$

Question: performance of these strategies?

Step 4: ε -Nash

Theorem The set of strategies $\{\check{u}_t^i, 0 \le t \le T, 1 \le i \le N\}$ obtained from steps 1-3 is an ε_N -Nash equilibrium, i.e., for any $i \in \{1, \dots, N\}$,

$$\sup_{u^i} J_i(u^i, \check{u}^{-i}) - \varepsilon_N \leq J_i(\check{u}^i, \check{u}^{-i}) \leq \sup_{u^i} J_i(u^i, \check{u}^{-i}),$$

where u^i is a centralized strategy (i.e., depending on all X_t^1, \dots, X_t^N) and $0 \le \varepsilon_N \to 0$ as $N \to \infty$.

Interpretation: Global sample path based information has diminishing value!

Infinite horizon and out-of-equilibrium behavior

- Formulate the infinite horizon game
- Try to solve a "stationary strategy" satisfying consistency requirement in MFG
- Slightly perturb the initial condition of the mean field system from "the steady state".
- ► Different situations: stable equilibrium, limit cycle, chaos.

See (Huang, DGAA'13, MFG special issue) for detail.

Minyi Huang Mean Field Games and Stochastic Growth Modeling

Continuous time modeling

Mean field production dynamics:

$$dX_t = F(m_t, X_t)dt - \delta X_t dt - C_t dt - \sigma X_t dW_t, \quad t \ge 0$$

- X_t : the capital of a representative agent, $X_0 > 0$, $EX_0 < \infty$.
- $-(\delta dt + \sigma dW_t)$: stochastic depreciation.
- $C_t \ge 0$: consumption.
- *m_t*: determined from the law of X_t by m_t = EX_t (for simplicity); interpreted as the state average of a large number of similar agents with independent dynamics.
- ▶ F(m, x): continuous function of (m, x), where $m \ge 0$, $x \ge 0$.

See next page for motivation.

Background for the previous infinite population model

A finite population of n agents.

$$dX_t^i = F(X_t^{(n)}, X_t^i)dt - \delta X_t^i dt - C_t^i dt - \sigma X_t^i dW_t^i,$$

Xⁱ_t: the capital of agent i; {Xⁱ₀, 1 ≤ i ≤ n}: i.i.d. initial states
 X⁽ⁿ⁾_t = ¹/_n ∑ⁿ_{i=1} Xⁱ_t: the mean field coupling term
 {Wⁱ_t, i = 1,...n}: i.i.d. standard Brownian motions.

For large *n*, we approximate $X_t^{(n)}$ by m_t and this can be heuristically justified by the law of large numbers as long as the control has certain symmetry and does not introduce correlation.

$$\implies dX_t^i = F(m_t, X_t^i)dt - \delta X_t^i dt - C_t^i dt - \sigma X_t^i dW_t^i$$

Continuous time modeling

The utility functional:

$$J = E\left[\int_0^T e^{-\rho t} U_0(C_t) dt + e^{-\rho T} S_0(m_T, X_T)\right],$$

▶ ϕ (= U_0 , $S_0(m_T, \cdot)$) is a smooth, increasing, and strictly concave function (i.e., $\phi''(z) < 0$) on $(0, \infty)$ and $\phi(0) = 0$, $\phi'(0) = \infty$, $\phi'(\infty) = 0$. Example: $\phi(C_t) = \frac{1}{\gamma}C_t^{\gamma}$.

- $S_0(m_T, X_T) > 0$: the terminal payoff.
- The motivation to introduce a dependence of S_0 on m_T
 - In a decision environment with congestion effect, the favor on X_T should take into account the collective behavior of others
 - It is possible to generalize U₀(C_t) → U₀(EC_t, C_t) (need to freeze EC_t during control design)

Continuous time modeling

Assumptions:

- (A1) For each fixed x, F is a decreasing function of m.
 - (A1') Special case: When F = A(m)x^α, A(·) is a continuous and strictly decreasing function on [0,∞).
- (A2) For each fixed m, F is an increasing concave function of x ∈ (0,∞). Furthermore, the Inada condition holds: (1)
 F(m,0) = 0, F_x(m,0) = ∞, F_x(m,∞) = 0.

This concavity indicates diminishing return to scale in production. The <u>admissible control set</u> consists of all consumption processes C_t such that $X_t \ge 0$ for all $t \in [0, T]$.

Continuous time modeling

We write the dynamic programming equation

$$\rho V(t,x) = V_t + \frac{\sigma^2 x^2}{2} V_{xx} + \sup_c [U_0(c) + (F(m_t, x) - \delta x - c) V_x], \qquad (4.1)$$
$$V(T,x) = S_0(m_T, x).$$

Under mild conditions, the equation may be interpreted in terms of certain generalized solutions (such as a viscosity solution). We proceed to simplify the above equation. Define the function

$$\psi(z) = \sup_{c} [U_0(c) - cz], \qquad z > 0.$$

By the concavity assumption on U_0 , there is a unique maximizer

$$\hat{c}(z) = \arg\max_{c} [U_0(c) - cz], \qquad z > 0.$$

Continuous time modeling

The mean field game derives the solution system:

$$\rho V(t,x) = V_t + \frac{\sigma^2 x^2}{2} V_{xx} + (F(m_t,x) - \delta x) V_x + \psi(V_x), \quad (4.2)$$

$$V(T,x) = S_0(m_T,x),$$
 (4.3)

$$dX_t = F(m_t, X_t)dt - \delta X_t dt - \hat{c}(V_x(t, X_t))dt - \sigma X_t dW_t, \quad (4.4)$$

 $m_t = EX_t$, (consistency condition) (4.5)

(the third equation is a special McKean-Vlasov equation). A meaningful solution (V, m) should fulfill the requirement

$$V_x(t,x)>0, \quad x>0.$$

Our plan is to identify an important class of models for which more explicit computation can be developed.

Continuous time modeling: Cobb-Douglas with HARA

The dynamics:

$$dX_t = A(m_t)X_t^{\alpha}dt - \delta X_t dt - C_t dt - \sigma X_t dW_t, \qquad (4.6)$$

The utility functional:

$$J = \frac{1}{\gamma} E\left[\int_0^T e^{-\rho t} C_t^{\gamma} dt + e^{-\rho T} \eta \lambda(m_T) X_T^{\gamma}\right].$$
(4.7)

- ► A(m) satisfies (A1'). F(m, x) = A(m)x^α is a mean field version of the Cobb-Douglas production function with capital x and a constant labor size.
- The function $\lambda > 0$ is continuous and decreasing on $[0, \infty)$.
- ► Take the standard choice $\gamma = 1 \alpha$ (equalizing the coefficient of the relative risk aversion to capital share)

Continuous time modeling: Cobb-Douglas with HARA

The mean field solution system reduces to

$$\begin{split} \rho V(t,x) &= V_t + \frac{\sigma^2 x^2}{2} V_{xx} + (A(m_t) x^{1-\gamma} - \delta x) V_x + \frac{1-\gamma}{\gamma} V_x^{\frac{\gamma}{\gamma-1}}, \\ V(T,x) &= \frac{\lambda(m_T)\eta}{\gamma} x^{\gamma}, \\ dX_t &= A(m_t) X_t^{1-\gamma} dt - \delta X_t dt - C_t dt - \sigma X_t dW_t, \\ m_t &= E X_t. \end{split}$$

Continuous time modeling: Cobb-Douglas with HARA

We try a solution of the form

$$V(t,x)=rac{1}{\gamma}[
ho(t)x^{\gamma}+h(t)],\quad x>0,\,\,t\geq 0.$$

We obtain two equations

$$\dot{p}(t) = \left[\rho + \frac{\sigma^2 \gamma (1 - \gamma)}{2} + \delta \gamma\right] p(t) - (1 - \gamma) p^{\frac{\gamma}{\gamma - 1}}(t) \qquad (4.8)$$
$$\dot{h}(t) = \rho h(t) - A(m_t) \gamma p(t), \qquad (4.9)$$

with the terminal conditions $p(T) = \lambda(m_T)\eta$ and h(T) = 0. **Proposition:** For fixed m_t , The ODE system (4.8)-(4.9) has a unique solution (p, h) and the optimal control is given in the feedback form

$$C_t = p^{\frac{1}{\gamma-1}}(t)X_t.$$

Continuous time modeling: Cobb-Douglas with HARA

The solution equation system of the mean field game reduces to

$$\begin{split} \dot{p}(t) &= \left[\rho + \frac{\sigma^2 \gamma(1-\gamma)}{2} + \delta \gamma\right] p(t) - (1-\gamma) p^{\frac{\gamma}{\gamma-1}}(t) \\ \dot{h}(t) &= \rho h(t) - A(m_t) \gamma p(t), \\ dZ_t &= \left\{\gamma A(m_t) - \left[\gamma \delta - \gamma \varphi^{-1}(t) - \frac{\sigma^2 \gamma(1-\gamma)}{2}\right] Z_t\right\} dt - \gamma \sigma Z_t dW_t, \\ m_t &= E Z_t^{\frac{1}{\gamma}} \quad (= E X_t), \end{split}$$

where $p(T) = \lambda(m_T)\eta$ and h(T) = 0. $\varphi(t)$ can be explicitly determined by $\lambda(m_T)$ and other constant parameters.

► Existence = fixed point problem. Fix m_t ; uniquely solve p, h; further solve $Z_t(m(\cdot))$. Then $m_t = EZ_t^{\frac{1}{\gamma}}(m(\cdot))$.

Concluding remarks

Computation:

- Except LQG (Huang et. al. 2003, 2007; Li et. al. 08; Bardi, 2012, ...), LQEG (Tembine et. al., 2011) cases, closed-form solutions for mean field games are rare
- HARA utility is useful to develop explicit computations

Mean field game literature

Related literature: mean field games (only a partial list)

- J.M. Lasry and P.L. Lions (2006a,b, JJM'07): Mean field equilibrium; O. Gueant (JMPA'09); GLL'11 (Springer): Human capital optimization
- G.Y. Weintraub et. el. (NIPS'05, Econometrica'08): Oblivious equilibria for Markov perfect industry dynamics; S. Adlakha, R. Johari, G. Weibtraub, A. Goldsmith (CDC'08): further generalizations with OEs
- M. Huang, P.E. Caines and R.P. Malhame (CDC'03, 04, CIS'06, TAC'07): Decentralized ε-Nash equilibrium in mean field dynamic games; M. Nourian, Caines, et. al. (TAC'12): collective motion and adaptation; A. Kizilkale and P. E. Caines (Preprint'12): adaptive mean field LQG games
- T. Li and J.-F. Zhang (IEEE TAC'08): Mean field LQG games with long run average cost; M. Bardi (Net. Heter. Media'12) LQG
- H. Tembine et. al. (GameNets'09): Mean field MDP and team; H. Tembine, Q. Zhu, T. Basar (IFAC'11): Risk sensitive mean field games

Related literature (ctn)

- A. Bensoussan et. al. (2011, 2012, Preprints) Mean field LQG games (and nonlinear diffusion models).
- H. Yin, P.G. Mehta, S.P. Meyn, U.V. Shanbhag (IEEE TAC'12): Nonlinear oscillator games and phase transition; Yang et. al. (ACC'11); Pequito, Aguiar, Sinopoli, Gomes (NetGCOOP'11): application to filtering/estimation
- D. Gomes, J. Mohr, Q. Souza (JMPA'10): Finite state space models
- V. Kolokoltsov, W. Yang, J. Li (preprint'11): Nonlinear markov processes and mean field games

Related literature (ctn)

- Z. Ma, D. Callaway, I. Hiskens (IEEE CST'13): recharging control of large populations of electric vehicles
- Y. Achdou and I. Capuzzo-Dolcetta (SIAM Numer.'11): Numerical solutions to mean field game equations (coupled PDEs)
- R. Buckdahn, P. Cardaliaguet, M. Quincampoix (DGA'11): Survey
- R. Carmona and F. Delarue (Preprint'12): McKean-Vlasov dynamics for players, and probabilistic approach
- R. E. Lucas Jr and B. Moll (Preprint'11): <u>Economic growth</u> (a trade-off for individuals to allocate time for producing and acquiring new knowledge)
- Huang (2010); Nguyen and Huang (2012); Nourian and Caines (2012); Bensoussan et al (2013): Major player models.

Related literature (ctn):

Mean field type optimal control:

- D. Andersson and B. Djehiche (AMO'11): Stochastic maximum principle
- ▶ J. Yong (Preprint'11): control of mean field Volterra integral equations
- ▶ T. Meyer-Brandis, B. Oksendal and X. Y. Zhou (2012): SMP.

There is a single decision maker who has significant influence on the mean of the underlying state process.

A player in a mean field game (except major player models) has little impact on the mean field.