Cyclical consistency and cyclical monotonicity

Alexander Kolesnikov

Higher School of Economics 2014

joint work with Olga Kudryavtseva, Tigran Nagapetyan

KORK STRATER STRAKES

P. Samuelson (1938), H.S. Houthakker (1955)

We are given n goods and collection of 2N vectors from \mathbb{R}^n_+ which are interpreted as

Observations x_1, \dots, x_N

Prices p_1, \cdots, p_N

Every observation

 $x_i = (x_i^1, \dots, x_i^n), x_i^j \ge 0$

KORK ERKER ADE YOUR

P. Samuelson (1938), H.S. Houthakker (1955)

We are given n goods and collection of 2N vectors from \mathbb{R}^n_+ which are interpreted as

Observations x_1, \dots, x_N

Prices p_1, \cdots, p_N

Every observation

 $x_i = (x_i^1, \dots, x_i^n), x_i^j \ge 0$

KORK ERKER ADE YOUR

P. Samuelson (1938), H.S. Houthakker (1955)

We are given n goods and collection of 2N vectors from \mathbb{R}^n_+ which are interpreted as

Observations x_1, \dots, x_N

Prices p_1, \cdots, p_N

Every observation

 $x_i = (x_i^1, \dots, x_i^n), x_i^j \ge 0$

KORK ERKER ADE YOUR

P. Samuelson (1938), H.S. Houthakker (1955)

We are given n goods and collection of 2N vectors from \mathbb{R}^n_+ which are interpreted as

Observations x_1, \dots, x_N

Prices p_1, \cdots, p_N

Every observation

 $x_i = (x_i^1, \dots, x_i^n), x_i^j \ge 0$

KORK ERKER ADE YOUR

P. Samuelson (1938), H.S. Houthakker (1955)

We are given n goods and collection of 2N vectors from \mathbb{R}^n_+ which are interpreted as

Observations x_1, \cdots, x_N

Prices p_1, \cdots, p_N

Every observation

$$
x_i=(x_i^1,\cdots,x_i^n),\ x_i^j\geq 0
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

P. Samuelson (1938), H.S. Houthakker (1955)

We are given n goods and collection of 2N vectors from \mathbb{R}^n_+ which are interpreted as

Observations x_1, \cdots, x_N

Prices p_1, \cdots, p_N

Every observation

$$
x_i=(x_i^1,\cdots,x_i^n),\ x_i^j\geq 0
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Rational choice

The choice of goods (x_i, p_i) is rational if there exists ${\bf utility}$ function u satisfying

 $u(y) < u(x_i)$

for all i and every $y\in \mathbb{R}^n_+$ such that

 $\langle y, p_i \rangle > \langle x_i, p_i \rangle$

Observation: *u* must have convex superlevel sets $\{u > c\}$.

Find necessary and sufficient condition for rationalizability of $\{(x_i, p_i)\}.$

Rational choice

The choice of goods (x_i, p_i) is rational if there exists ${\bf utility}$ function u satisfying

 $u(y) < u(x_i)$

for all i and every $y\in \mathbb{R}^n_+$ such that

 $\langle y, p_i \rangle > \langle x_i, p_i \rangle$

Observation: u must have convex superlevel sets $\{u > c\}$.

Find necessary and sufficient condition for rationalizability of $\{(x_i, p_i)\}.$

Rational choice

The choice of goods (x_i, p_i) is rational if there exists ${\bf utility}$ function u satisfying

 $u(y) < u(x_i)$

for all i and every $y\in \mathbb{R}^n_+$ such that

 $\langle y, p_i \rangle > \langle x_i, p_i \rangle$

Observation: u must have convex superlevel sets $\{u > c\}$.

Problem

Find necessary and sufficient condition for rationalizability of $\{(x_i, p_i)\}.$

Cyclical consistency axiom

Choose a subset of the data (denote again x_1, x_2, \dots)

 x_i is directly prefered to x_j

 $X_i \succeq X_i$

if

 $\langle x_j, p_i \rangle > \langle x_i, p_i \rangle$

Equivalently

$$
a_{ij}=\langle x_j-x_i,p_i\rangle>0.
$$

 $X_1 \succ X_2 \succ X_3 \succ \cdots \succ X_n \succ_i X_1.$ $X_1 \succ X_2 \succ X_3 \succ \cdots \succ X_n \succ_i X_1.$

Cyclical consistency axiom The following cycle is not possible

Cyclical consistency axiom

Choose a subset of the data (denote again x_1, x_2, \dots)

 x_i is directly prefered to x_j

 $x_i \succ x_i$

if

$$
\langle x_j,p_i\rangle>\langle x_i,p_i\rangle
$$

Equivalently

$$
a_{ij}=\langle x_j-x_i,p_i\rangle>0.
$$

 $X_1 \succ X_2 \succ X_3 \succ \cdots \succ X_n \succ_i X_1.$ $X_1 \succ X_2 \succ X_3 \succ \cdots \succ X_n \succ_i X_1.$

Cyclical consistency axiom The following cycle is not possible

Cyclical consistency axiom

Choose a subset of the data (denote again x_1, x_2, \dots)

 x_i is directly prefered to x_j

 $x_i \succ x_i$

if

$$
\langle x_j,p_i\rangle>\langle x_i,p_i\rangle
$$

Equivalently

$$
a_{ij}=\langle x_j-x_i,p_i\rangle>0.
$$

Cyclical consistency axiom The following cycle is not possible

$$
x_1 \succ x_2 \succ x_3 \succ \cdots \succ x_n \succ x_1.
$$

In other words: assumption

$$
a_{12}\geq 0, a_{23}\geq 0, \cdots, a_{k1}\geq 0,
$$

implies

$$
a_{12}=a_{23}=\cdots=a_{k1}=0.
$$

This is the cyclical consistency axiom / strong axiom of revealed preference (SARP)

(Houthakker) Cyclical consistency is equivalent to rationalizability.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

In other words: assumption

$$
a_{12}\geq 0, a_{23}\geq 0, \cdots, a_{k1}\geq 0,
$$

implies

$$
a_{12}=a_{23}=\cdots=a_{k1}=0.
$$

This is the cyclical consistency axiom / strong axiom of revealed preference (SARP)

(Houthakker) Cyclical consistency is equivalent to rationalizability.

In other words: assumption

$$
a_{12}\geq 0, a_{23}\geq 0, \cdots, a_{k1}\geq 0,
$$

implies

$$
a_{12}=a_{23}=\cdots=a_{k1}=0.
$$

This is the cyclical consistency axiom / strong axiom of revealed preference (SARP)

Theorem (Houthakker) Cyclical consistency is equivalent to rationalizability.

KOD KARD KED KED E VOOR

Another assumption which implies cyclical consistency: there exists a positive function c on \mathbb{R}^+_n satisfying

$$
c(p_1)a_{12} + c(p_2)a_{23} + \cdots + c(p_k)a_{k1} \leq 0
$$

for every subset $\{x_i, p_i\}$ of D.

Rearranging the terms we get

$$
c(p_1)\langle x_2,p_1\rangle + c(p_2)\langle x_3,p_2\rangle + \cdots + c(p_k)\langle x_1,p_k\rangle
$$

$$
\leq c(p_1)\langle x_1,p_1\rangle + c(p_2)\langle x_2,p_2\rangle + \cdots + c(p_k)\langle x_k,p_k\rangle.
$$

This is exactly the **cyclical monotonicity** assumption for the cost function

$$
h(x, y) = -c(y)\langle x, y \rangle.
$$

 Ω

Another assumption which implies cyclical consistency: there exists a positive function c on \mathbb{R}^+_n satisfying

$$
c(p_1)a_{12} + c(p_2)a_{23} + \cdots + c(p_k)a_{k1} \leq 0
$$

for every subset $\{x_i, p_i\}$ of D.

Rearranging the terms we get

$$
c(p_1)\langle x_2,p_1\rangle + c(p_2)\langle x_3,p_2\rangle + \cdots + c(p_k)\langle x_1,p_k\rangle
$$

$$
\leq c(p_1)\langle x_1,p_1\rangle + c(p_2)\langle x_2,p_2\rangle + \cdots + c(p_k)\langle x_k,p_k\rangle.
$$

This is exactly the **cyclical monotonicity** assumption for the cost function

$$
h(x, y) = -c(y)\langle x, y \rangle.
$$

Another assumption which implies cyclical consistency: there exists a positive function c on \mathbb{R}^+_n satisfying

$$
c(p_1)a_{12} + c(p_2)a_{23} + \cdots + c(p_k)a_{k1} \leq 0
$$

for every subset $\{x_i, p_i\}$ of D.

Rearranging the terms we get

$$
c(p_1)\langle x_2,p_1\rangle + c(p_2)\langle x_3,p_2\rangle + \cdots + c(p_k)\langle x_1,p_k\rangle
$$

$$
\leq c(p_1)\langle x_1,p_1\rangle + c(p_2)\langle x_2,p_2\rangle + \cdots + c(p_k)\langle x_k,p_k\rangle.
$$

This is exactly the **cyclical monotonicity** assumption for the cost function

$$
h(x,y) = -c(y)\langle x,y\rangle.
$$

Discrete case: yes

$$
h(x, y) = -\langle x, y \rangle.
$$

By the Rockafellar theorem, there exists a **concave** utility function u such that $u(x_j) \leq u(x_i) + c_i \langle x_j - x_i, p_i \rangle$.

Ekeland, Galichon (2012). Interpretation of the rationalizability problem as a dual to the housing problem of [S](#page-18-0)[ha](#page-20-0)[p](#page-18-0)[le](#page-19-0)[y](#page-23-0), [an](#page-0-0)[d](#page-47-0) [Sca](#page-0-0)[rf](#page-47-0)[.](#page-0-0) \equiv 000

Discrete case: yes

(Afriat) Given a finite cyclically consistent vector field $D=\{x_i,p_i\}$, $1\leq i\leq N$ there exist numbers c_i such that $\{x_i, c_i \cdot p_i\}$ is cyclically monotone

$$
h(x,y)=-\langle x,y\rangle.
$$

By the Rockafellar theorem, there exists a **concave** utility function u such that $u(x_j) \leq u(x_i) + c_i \langle x_j - x_i, p_i \rangle$.

Ekeland, Galichon (2012). Interpretation of the rationalizability problem as a dual to the housing problem of [S](#page-19-0)[ha](#page-21-0)[p](#page-18-0)[le](#page-19-0)[y](#page-23-0), [an](#page-0-0)[d](#page-47-0) [Sca](#page-0-0)[rf](#page-47-0)[.](#page-0-0) ϵ_{max}

Discrete case: yes

Theorem (Afriat) Given a finite cyclically consistent vector field $D = \{x_i, p_i\}$, $1 \leq i \leq N$ there exist numbers c_i such that $\{x_i, c_i \cdot p_i\}$ is cyclically monotone

$$
h(x,y)=-\langle x,y\rangle.
$$

By the Rockafellar theorem, there exists a **concave** utility function u such that $u(x_j) \leq u(x_i) + c_i \langle x_j - x_i, p_i \rangle$.

Ekeland, Galichon (2012). Interpretation of the rationalizability problem as a dual to the housing problem of [S](#page-20-0)[ha](#page-22-0)[p](#page-18-0)[le](#page-19-0)[y](#page-23-0), [an](#page-0-0)[d](#page-47-0) [Sca](#page-0-0)[rf](#page-47-0)[.](#page-0-0) ϵ_{max}

Discrete case: yes

Theorem (Afriat) Given a finite cyclically consistent vector field $D = \{x_i, p_i\}$, $1 \leq i \leq N$ there exist numbers c_i such that $\{x_i, c_i \cdot p_i\}$ is cyclically monotone

$$
h(x,y)=-\langle x,y\rangle.
$$

By the Rockafellar theorem, there exists a concave utility function u such that $u(x_j) \leq u(x_i) + c_i \langle x_j - x_i, p_i \rangle$.

Ekeland, Galichon (2012). Interpretation of the rationalizability problem as a dual to the housing problem of [S](#page-21-0)[ha](#page-23-0)[p](#page-18-0)[le](#page-19-0)[y](#page-23-0), [an](#page-0-0)[d](#page-47-0) [Sca](#page-0-0)[rf](#page-47-0)[.](#page-0-0) ϵ_{max}

Discrete case: yes

Theorem (Afriat) Given a finite cyclically consistent vector field $D = \{x_i, p_i\}$, $1 \leq i \leq N$ there exist numbers c_i such that $\{x_i, c_i \cdot p_i\}$ is cyclically monotone

$$
h(x,y)=-\langle x,y\rangle.
$$

By the Rockafellar theorem, there exists a **concave** utility function u such that $u(x_j) \leq u(x_i) + c_i \langle x_j - x_i, p_i \rangle$.

Ekeland, Galichon (2012). Interpretation of the rationalizability problem as a dual to the housing problem of [S](#page-22-0)[ha](#page-24-0)[p](#page-18-0)[le](#page-19-0)[y](#page-23-0) [an](#page-0-0)[d](#page-47-0) [Sca](#page-0-0)[rf](#page-47-0)[.](#page-0-0) $\frac{1}{2}$ and $\frac{1}{2}$

Additional assumption: the field is homogeneous

$$
\{x_i,p_i\}\in D\Longrightarrow \{t\cdot x_i,p_i\},\ \ t\geq 0
$$

(H. Varian) Every homogeneous cyclically consistent vector field satisfies the following axiom (HARP):

$$
\langle x_1,p_1\rangle\cdots\langle x_k,p_k\rangle\geq\langle x_2,p_1\rangle\cdots\langle x_1,p_k\rangle
$$

Proof of HARP for $k = 2$.

Find t such that $\langle x_1, p_1 \rangle = t \langle x_2, p_1 \rangle = \langle tx_2, p_1 \rangle$. Cyclical consistency: $\langle tx_2, p_2 \rangle \geq \langle x_1, p_2 \rangle$. Substituting $t = \frac{\langle x_1, p_1 \rangle}{\langle x_2, p_1 \rangle}$ $\frac{\langle X_1, p_1 \rangle}{\langle X_2, p_1 \rangle}$ into the latter inequality we get the claim. 2990

Additional assumption: the field is homogeneous

$$
\{x_i,p_i\}\in D\Longrightarrow \{t\cdot x_i,p_i\},\ t\geq 0
$$

(H. Varian) Every homogeneous cyclically consistent vector field satisfies the following axiom (HARP):

$$
\langle x_1,p_1\rangle\cdots\langle x_k,p_k\rangle\geq\langle x_2,p_1\rangle\cdots\langle x_1,p_k\rangle
$$

Proof of HARP for $k = 2$.

Find t such that $\langle x_1, p_1 \rangle = t \langle x_2, p_1 \rangle = \langle tx_2, p_1 \rangle$. Cyclical consistency: $\langle tx_2, p_2 \rangle \geq \langle x_1, p_2 \rangle$. Substituting $t = \frac{\langle x_1, p_1 \rangle}{\langle x_2, p_1 \rangle}$ $\frac{\langle X_1, p_1 \rangle}{\langle X_2, p_1 \rangle}$ into the latter inequality we get the claim.**KORK ERKER ADE YOUR**

Additional assumption: the field is homogeneous

$$
\{x_i,p_i\}\in D\Longrightarrow \{t\cdot x_i,p_i\},\ t\geq 0
$$

(H. Varian) Every homogeneous cyclically consistent vector field satisfies the following axiom (HARP):

$$
\langle x_1,p_1\rangle\cdots\langle x_k,p_k\rangle\geq\langle x_2,p_1\rangle\cdots\langle x_1,p_k\rangle
$$

Proof of HARP for $k = 2$.

Find t such that $\langle x_1, p_1 \rangle = t \langle x_2, p_1 \rangle = \langle tx_2, p_1 \rangle$. Cyclical consistency: $\langle tx_2, p_2 \rangle \geq \langle x_1, p_2 \rangle$. Substituting $t = \frac{\langle x_1, p_1 \rangle}{\langle x_2, p_1 \rangle}$ $\frac{\langle X_1, p_1 \rangle}{\langle X_2, p_1 \rangle}$ into the latter inequality we get the claim.4 D > 4 P + 4 B + 4 B + B + 9 Q O

Additional assumption: the field is homogeneous

$$
\{x_i,p_i\}\in D\Longrightarrow \{t\cdot x_i,p_i\},\ t\geq 0
$$

(H. Varian) Every homogeneous cyclically consistent vector field satisfies the following axiom (HARP):

$$
\langle x_1,p_1\rangle\cdots\langle x_k,p_k\rangle\geq\langle x_2,p_1\rangle\cdots\langle x_1,p_k\rangle
$$

Proof of HARP for $k = 2$. Find t such that $\langle x_1, p_1 \rangle = t \langle x_2, p_1 \rangle = \langle tx_2, p_1 \rangle$. Cyclical consistency: $\langle tx_2, p_2 \rangle \ge \langle x_1, p_2 \rangle$. Substituting $t = \frac{\langle x_1, p_1 \rangle}{\langle x_2, p_1 \rangle}$ $\frac{\langle x_1,p_1 \rangle}{\langle x_2,p_1 \rangle}$ into the latter inequality we get the claim.**KORKAR KERKER E VOOR** Taking logarithm we get that this condition is equivalent to cyclical monotonicity for $h(x, y) = -\log\langle x, y \rangle$.

Every (in general non-discrete) homogeneous cyclically consistent vector field $\{(x, p(x))\} \subset \mathbb{R}^n_+ \times \mathbb{R}^n_+$, $|p|=1$ solves optimal transportation problem for every couple of probability measures μ , $\nu=\mu\circ\rho^{-1}$ and cost function

$$
c(x,y)=-\log\langle x,y\rangle.
$$

provided transport plan is finite cost plan.

Important: optimality always implies cyclical monotonicity but the converse is not always true.

Taking logarithm we get that this condition is equivalent to cyclical monotonicity for $h(x, y) = -\log\langle x, y \rangle$.

Theorem

Every (in general non-discrete) homogeneous cyclically consistent vector field $\{(x, p(x))\} \subset \mathbb{R}^n_+ \times \mathbb{R}^n_+$, $|p|=1$ solves optimal transportation problem for every couple of probability measures μ , $\nu = \mu \circ \rho^{-1}$ and cost function

$$
c(x,y)=-\log\langle x,y\rangle.
$$

provided transport plan is finite cost plan.

Important: optimality always implies cyclical monotonicity but the converse is not always true.

KORKAR KERKER E VOOR

Taking logarithm we get that this condition is equivalent to cyclical monotonicity for $h(x, y) = -\log\langle x, y \rangle$.

Theorem

Every (in general non-discrete) homogeneous cyclically consistent vector field $\{(x, p(x))\} \subset \mathbb{R}^n_+ \times \mathbb{R}^n_+$, $|p|=1$ solves optimal transportation problem for every couple of probability measures μ , $\nu = \mu \circ \rho^{-1}$ and cost function

$$
c(x,y)=-\log\langle x,y\rangle.
$$

provided transport plan is finite cost plan.

Important: optimality always implies cyclical monotonicity but the converse is not always true.

KORKAR KERKER E VOOR

Geometric interpretation

Alexandrov problem

Find a convex surface F with given Gauss curvature $K(n)$, where $n: F \to S^{n-1}$ is the Gauss normal map.

(Oliker, 2007) Denote by σ the normalized Hausdorff measure on the unit sphere S^{d-1} . The Alexandrov problem can be stated as an optimal transportation problem for the cost function

 $c(x, y) = -\log\langle x, y \rangle$

on $S^{n-1}\times S^{n-1}$ and measures σ , $K(n)\cdot\sigma$.

The potential functions h, ρ in the corresponding dual problem can be interpreted as the support and the radial function of F. They satisfy

$$
\log h(n) - \log \rho(x) \ge \log \langle x, y \rangle.
$$

Geometric interpretation

Alexandrov problem

Find a convex surface F with given Gauss curvature $K(n)$, where $n: \mathit{F} \rightarrow S^{n-1}$ is the Gauss normal map.

(Oliker, 2007) Denote by σ the normalized Hausdorff measure on the unit sphere S^{d-1} . The Alexandrov problem can be stated as an optimal transportation problem for the cost function

 $c(x, y) = -\log\langle x, y \rangle$

on $S^{n-1}\times S^{n-1}$ and measures σ , $K(n)\cdot\sigma$.

The potential functions h, ρ in the corresponding dual problem can be interpreted as the support and the radial function of F. They satisfy

$$
\log h(n) - \log \rho(x) \ge \log \langle x, y \rangle.
$$

Geometric interpretation

Alexandrov problem

Find a convex surface F with given Gauss curvature $K(n)$, where $n: \mathit{F} \rightarrow S^{n-1}$ is the Gauss normal map.

Theorem

(Oliker, 2007) Denote by σ the normalized Hausdorff measure on the unit sphere S^{d-1} . The Alexandrov problem can be stated as an optimal transportation problem for the cost function

 $c(x, y) = -\log\langle x, y \rangle$

on $S^{n-1}\times S^{n-1}$ and measures σ , $K(n)\cdot\sigma$.

The potential functions h, ρ in the corresponding dual problem can be interpreted as the support and the radial function of F. They satisfy

$$
\log h(n) - \log \rho(x) \geq \log \langle x, y \rangle.
$$

Extension of the Varian's result

Let A, B be two convex sets contaning zero. Let $u = t$ on $\partial(A + Bt)$, where the sum is understood in the Minkowski sense. The corresponding vector field $p(x)=\frac{\nabla u}{|\nabla u|}$ is c -monotone for the cost function

$$
c(x,y)=-\log\langle x-n_A^{-1}(y),y\rangle, \ y\in S^{n-1},
$$

where n_A^{-1} A^{-1} is the inverse Gauss map for ∂A .

General continuous case

Assume we are given a cyclically consistent vector field $p(x)\in \mathbb{R}^n_+\cap S^{n-1}, x\in \mathbb{R}^n_+$ and a corresponding utility function $u_0.$ Any corresponding utility function u is a composition

$$
u=f(u_0),
$$

where f is increasing. We want $f(u_0)$ to be concave. Equivalently, if u has convex sublevel sets $\{u \le c\}$ we are looking for increasing f such that $f(u)$ is convex.

KORKAR KERKER E VOOR

It is known that the Afriat's theorem does not hold for general continuous case.

First results: De Finetti (1949), Fenchel (1953).

Counterexamples

Functions

$$
x + \sqrt{x + y^2}
$$

$$
\frac{2x}{2 - y}, \ 0 < x, y \le 1
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

have hyperplanes for level sets and are non-convexifiable.

It is known that the Afriat's theorem does not hold for general continuous case.

First results: De Finetti (1949), Fenchel (1953).

Counterexamples

Functions

$$
x + \sqrt{x + y^2}
$$

$$
\frac{2x}{2 - y}, \ 0 < x, y \le 1
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

have hyperplanes for level sets and are non-convexifiable.

It is known that the Afriat's theorem does not hold for general continuous case.

First results: De Finetti (1949), Fenchel (1953).

Counterexamples

Functions

$$
x + \sqrt{x + y^2}
$$

$$
\frac{2x}{2 - y}, \ 0 < x, y \le 1
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

have hyperplanes for level sets and are non-convexifiable.

P.K. Monteiro: A strictly monotonic utility function u with affine level sets is convexifiable is and only if it had the form $u = f(ax + b)$.

Y. Kannai: necessary and sufficient conditions for convexifiability.

KOD KARD KED KED E VOOR

P.K. Monteiro: A strictly monotonic utility function u with affine level sets is convexifiable is and only if it had the form $u = f(ax + b)$.

Y. Kannai: necessary and sufficient conditions for convexifiability.

KORKARYKERKE PROGRAM

Necessary and sufficient conditions

$$
\alpha(x_1, x_2, x_3) = \sup_{y_i \sim x_i} \frac{|y_2 - y_1|}{|y_3 - y_2|},
$$

 y_i collinear, y_2 between y_1, y_3 .

Y. Kannai: a cyclically consistent vector field p is convexifiable if and only if

$$
\sup \Bigl[\sum_{k=1}^n \sum_{i=k}^{n-1} \alpha(x_{i-1}, x_i, x_{i+1}) \Bigr]^{-1} \sum_{k=1}^j \sum_{i=k}^{n-1} \alpha(x_{i-1}, x_i, x_{i+1}) < 1
$$

where $p_n \succ \cdots \succ p_2 \succ p_1 \succ p_0$, p_n is maximal, $p_i = p$, $j < n$.

One-point condition (Fenchel) necessary and suffient conditions for existence of twice differentiable f such that $f(u)$ is convex.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Necessary and sufficient conditions

$$
\alpha(x_1, x_2, x_3) = \sup_{y_i \sim x_i} \frac{|y_2 - y_1|}{|y_3 - y_2|},
$$

 y_i collinear, y_2 between y_1, y_3 .

Y. Kannai: a cyclically consistent vector field p is convexifiable if and only if

$$
\sup \Bigl[\sum_{k=1}^n \sum_{i=k}^{n-1} \alpha(x_{i-1}, x_i, x_{i+1}) \Bigr]^{-1} \sum_{k=1}^j \sum_{i=k}^{n-1} \alpha(x_{i-1}, x_i, x_{i+1}) < 1
$$

where $p_n \succ \cdots \succ p_2 \succ p_1 \succ p_0$, p_n is maximal, $p_i = p$, $j < n$.

One-point condition (Fenchel) necessary and suffient conditions for existence of twice differentiable f such that $f(u)$ is convex.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Let p be a cyclically consistent unit vector field on \mathbb{R}^n_+ . Assume that p, ω are continuous and satisfies the following properties:

-
-

Then [t](#page-47-0)he rati[on](#page-0-0)alizing function u satisfying $u(t_{p}) = t$ [is](#page-0-0) [c](#page-47-0)on[ve](#page-47-0)[x.](#page-0-0)

Theorem

Let p be a cyclically consistent unit vector field on \mathbb{R}^n_+ . Assume that p, ω are continuous and satisfies the following properties:

- $\bullet \; \; p|_{\text{x}_i=0}$ does not depend on x_i for every $1 \leq i \leq$ n and has zero for its *i-th* component
- The projection of the acceleration $\nabla_{\omega} \omega(x)$ onto the hyperplane orthogonal to $p(x)$ is a continuous vector field with has a positive first component for every $x \notin \{te_1, t \geq 0\}$.

Then [t](#page-47-0)he rati[on](#page-0-0)alizing function u satisfying $u(te_1) = t$ [is](#page-0-0) [c](#page-47-0)on[ve](#page-47-0)[x.](#page-0-0)

Theorem

Let p be a cyclically consistent unit vector field on \mathbb{R}^n_+ . Assume that p, ω are continuous and satisfies the following properties:

- $\bullet \hspace{0.1cm}$ $\rho|_{\mathsf{x}_{i}=0}$ does not depend on x_{i} for every $1 \leq i \leq$ n and has zero for its *i*-th component
- The projection of the acceleration $\nabla_{\omega} \omega(x)$ onto the hyperplane orthogonal to $p(x)$ is a continuous vector field with has a positive first component for every $x \notin \{te_1, t \geq 0\}$.

Then [t](#page-47-0)he rati[on](#page-0-0)alizing function u satisfying $u(te_1) = t$ [is](#page-0-0) [c](#page-47-0)on[ve](#page-47-0)[x.](#page-0-0)

Theorem

Let p be a cyclically consistent unit vector field on \mathbb{R}^n_+ . Assume that p, ω are continuous and satisfies the following properties:

- $\bullet \hspace{0.1cm}$ $\rho|_{\mathsf{x}_{i}=0}$ does not depend on x_{i} for every $1 \leq i \leq$ n and has zero for its *i*-th component
- The projection of the acceleration $\nabla_{\omega} \omega(x)$ onto the hyperplane orthogonal to $p(x)$ is a continuous vector field with has a positive first component for every $x \notin \{te_1, t \geq 0\}$.

Then [t](#page-47-0)he rati[on](#page-0-0)alizing function u satisfying $u(te_1) = t$ [is](#page-0-0) [c](#page-47-0)on[ve](#page-47-0)[x.](#page-0-0)

For $n = 2$ one can get a more precise statement:

Assume that the curvatures of all γ_{ν} are bounded from below by a number $K \leq 0$. Let $\alpha \in [0, \frac{\pi}{2}]$ $\frac{\pi}{2}$) be the angle between *n* and ω .

Assume that there is an upper bound $\alpha \leq \alpha_{\mathsf{0}} < \frac{\pi}{2}$ $\frac{\pi}{2}$. Finally, assume that $p(x, 0) = 1$

Then there exists a universal function f on $[0, \frac{\pi}{2}]$ $(\frac{\pi}{2})$ such that u is convex provided

$$
u_{xx}(t,0)\geq -K u_x^2(t,0)\frac{f(\alpha_0)}{\min_t|u'(t)|}.
$$