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Rationalizability problem and revealed preferences

P. Samuelson (1938), H.S. Houthakker (1955)

We are given n goods and collection of 2N vectors from Rn
+ which

are interpreted as

Observations x1, · · · , xN

Prices p1, · · · , pN

Every observation

xi = (x1
i , · · · , xn

i ), x j
i ≥ 0

corresponds to a choice of goods made by customer

The corresponding prices of goods are given by the price vector

pi = (p1
i , · · · , pn

i ), pi
j ≥ 0
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Rational choice
The choice of goods (xi , pi ) is rational if there exists utility
function u satisfying

u(y) < u(xi )

for all i and every y ∈ Rn
+ such that

〈y , pi 〉 > 〈xi , pi 〉

Observation: u must have convex superlevel sets {u > c}.

Problem
Find necessary and sufficient condition for rationalizability of
{(xi , pi )}.
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Cyclical consistency axiom

Choose a subset of the data (denote again x1, x2, · · · )

xi is directly prefered to xj

xi � xj

if
〈xj , pi 〉 > 〈xi , pi 〉

Equivalently
aij = 〈xj − xi , pi 〉 > 0.

Cyclical consistency axiom

The following cycle is not possible

x1 � x2 � x3 � · · · � xn � x1.
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In other words: assumption

a12 ≥ 0, a23 ≥ 0, · · · , ak1 ≥ 0,

implies
a12 = a23 = · · · = ak1 = 0.

This is the cyclical consistency axiom / strong axiom of revealed
preference (SARP)

Theorem
(Houthakker) Cyclical consistency is equivalent to rationalizability.
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Another assumption which implies cyclical consistency: there exists
a positive function c on R+

n satisfying

c(p1)a12 + c(p2)a23 + · · ·+ c(pk)ak1 ≤ 0

for every subset {xi , pi} of D.

Rearranging the terms we get

c(p1)〈x2, p1〉+ c(p2)〈x3, p2〉+ · · ·+ c(pk)〈x1, pk〉
≤ c(p1)〈x1, p1〉+ c(p2)〈x2, p2〉+ · · ·+ c(pk)〈xk , pk〉.

This is exactly the cyclical monotonicity assumption for the cost
function

h(x , y) = −c(y)〈x , y〉.
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Does cyclical consistency imply cyclical monotonicity for some
function c?

Discrete case: yes

Theorem
(Afriat) Given a finite cyclically consistent vector field
D = {xi , pi}, 1 ≤ i ≤ N there exist numbers ci such that
{xi , ci · pi} is cyclically monotone

h(x , y) = −〈x , y〉.

By the Rockafellar theorem, there exists a concave utility function
u such that u(xj) ≤ u(xi ) + ci 〈xj − xi , pi 〉.

Ekeland, Galichon (2012). Interpretation of the rationalizability
problem as a dual to the housing problem of Shapley and Scarf.
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What happens in continuous case?

Additional assumption: the field is homogeneous

{xi , pi} ∈ D =⇒ {t · xi , pi}, t ≥ 0

(H. Varian) Every homogeneous cyclically consistent vector field
satisfies the following axiom (HARP):

〈x1, p1〉 · · · 〈xk , pk〉 ≥ 〈x2, p1〉 · · · 〈x1, pk〉

Proof of HARP for k = 2.
Find t such that 〈x1, p1〉 = t〈x2, p1〉 = 〈tx2, p1〉. Cyclical

consistency: 〈tx2, p2〉 ≥ 〈x1, p2〉. Substituting t = 〈x1,p1〉
〈x2,p1〉 into the

latter inequality we get the claim.
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Taking logarithm we get that this condition is equivalent to cyclical
monotonicity for h(x , y) = − log〈x , y〉.

Theorem
Every (in general non-discrete) homogeneous cyclically consistent
vector field {(x , p(x))} ⊂ Rn

+ × Rn
+, |p| = 1 solves optimal

transportation problem for every couple of probability measures µ,
ν = µ ◦ p−1 and cost function

c(x , y) = − log〈x , y〉.

provided transport plan is finite cost plan.

Important: optimality always implies cyclical monotonicity but the
converse is not always true.
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Geometric interpretation

Alexandrov problem

Find a convex surface F with given Gauss curvature K (n), where
n : F → Sn−1 is the Gauss normal map.

Theorem
(Oliker, 2007) Denote by σ the normalized Hausdorff measure on
the unit sphere Sd−1. The Alexandrov problem can be stated as an
optimal transportation problem for the cost function

c(x , y) = − log〈x , y〉

on Sn−1 × Sn−1 and measures σ, K (n) · σ.
The potential functions h, ρ in the corresponding dual problem can
be interpreted as the support and the radial function of F . They
satisfy

log h(n)− log ρ(x) ≥ log〈x , y〉.
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Extension of the Varian’s result

Let A,B be two convex sets contaning zero. Let u = t on
∂(A + Bt), where the sum is understood in the Minkowski sense.
The corresponding vector field p(x) = ∇u

|∇u| is c-monotone for the
cost function

c(x , y) = − log〈x − n−1A (y), y〉, y ∈ Sn−1,

where n−1A is the inverse Gauss map for ∂A.



General continuous case

Assume we are given a cyclically consistent vector field
p(x) ∈ Rn

+ ∩ Sn−1, x ∈ Rn
+ and a corresponding utility function u0.

Any corresponding utility function u is a composition

u = f (u0),

where f is increasing. We want f (u0) to be concave.
Equivalently, if u has convex sublevel sets {u ≤ c} we are looking
for increasing f such that f (u) is convex.



It is known that the Afriat’s theorem does not hold for general
continuous case.

First results: De Finetti (1949), Fenchel (1953).

Counterexamples

Functions
x +

√
x + y2

2x

2− y
, 0 < x , y ≤ 1

have hyperplanes for level sets and are non-convexifiable.
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P.K. Monteiro: A strictly monotonic utility function u with affine
level sets is convexifiable is and only if it had the form
u = f (ax + b).

Y. Kannai: necessary and sufficient conditions for convexifiability.
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Necessary and sufficient conditions

α(x1, x2, x3) = sup
yi∼xi

|y2 − y1|
|y3 − y2|

,

yi collinear, y2 between y1, y3.
Y. Kannai: a cyclically consistent vector field p is convexifiable if
and only if

sup
[ n∑
k=1

n−1∑
i=k

α(xi−1, xi , xi+1)
]−1 j∑

k=1

n−1∑
i=k

α(xi−1, xi , xi+1) < 1

where pn � · · · � p2 � p1 � p0, pn is maximal, pj = p, j < n.

One-point condition (Fenchel) necessary and suffient conditions for
existence of twice differentiable f such that f (u) is convex.
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For every fixed ν ∈ Sn−1 consider a family of points Γν where the
field p(x) coinsides with ν (this is inverse Gauss map. Assume that
every Γν is a continuously differentiable curve. Natural
parametrization t → γν(t), unit speed tangent vector ω = d

dt γν(t).

Theorem
Let p be a cyclically consistent unit vector field on Rn

+. Assume
that p, ω are continuous and satisfies the following properties:

• p|xi=0 does not depend on xi for every 1 ≤ i ≤ n and has zero
for its i -th component

• The projection of the acceleration ∇ωω(x) onto the
hyperplane orthogonal to p(x) is a continuous vector field
with has a positive first component for every x /∈ {te1, t ≥ 0}.

Then the rationalizing function u satisfying u(te1) = t is convex.
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n=2

For n = 2 one can get a more precise statement:
Assume that the curvatures of all γν are bounded from below by a
number K ≤ 0. Let α ∈ [0, π2 ) be the angle between n and ω.
Assume that there is an upper bound α ≤ α0 <

π
2 . Finally, assume

that p(x , 0) = 1
Then there exists a universal function f on [0, π2 ) such that u is
convex provided

uxx(t, 0) ≥ −Ku2
x (t, 0)

f (α0)

mint |u′(t)|
.


