Contests for Experimentation

Marina Halac Navin Kartik Qingmin Liu

September 2014

Introduction (1)

- Principal wants to obtain an innovation whose feasibility is uncertain
- Agents can work on or experiment with innovation
- Probability of success depends on state and agents' hidden efforts

Introduction (1)

- Principal wants to obtain an innovation whose feasibility is uncertain
- Agents can work on or experiment with innovation
- Probability of success depends on state and agents' hidden efforts
- $\rightarrow\,$ How should principal incentivize agents to experiment?
- \rightarrow This paper: What is the optimal contest for experimentation?

Introduction (2)

- Long tradition of using contests to achieve specific innovations
 - more broadly, intellectual property and patent policy discussion
- Examples:
 - 1795 Napoleon govt offered a 12,000-franc prize for a food preservation method (winning idea: airtight sealing 1809).
 - Netflix contest: \$1M to improve recommendation accuracy by 10%
 - Increased use in last two decades

▶ Details

Introduction (2)

- Long tradition of using contests to achieve specific innovations
 - more broadly, intellectual property and patent policy discussion
- Examples:
 - 1795 Napoleon govt offered a 12,000-franc prize for a food preservation method (winning idea: airtight sealing 1809).
 - Netflix contest: \$1M to improve recommendation accuracy by 10%
 - Increased use in last two decades
- Contests:
 - Not initially known if target attainable; contestants learn over time
 - Contestants' effort is unobservable \implies private learning
 - Contest architecture affects contestants' incentives to exert effort

▶ Details

Introduction (2)

- Long tradition of using contests to achieve specific innovations
 - more broadly, intellectual property and patent policy discussion
- Examples:
 - 1795 Napoleon govt offered a 12,000-franc prize for a food preservation method (winning idea: airtight sealing 1809).
 - Netflix contest: \$1M to improve recommendation accuracy by 10%
 - Increased use in last two decades
- Contests:
 - Not initially known if target attainable; contestants learn over time
 - Contestants' effort is unobservable \implies private learning
 - Contest architecture affects contestants' incentives to exert effort
- What contest design should be used?
 - Posit fixed budget and aim to max. prob. of one success

Propose tractable model based on exponential-bandit framework
Contests for Experimentation
Halac, Kartik, Liu

▶ Details

Should Netflix award full prize to first successful contestant?

• Intuit: Yes (under risk neutrality), sharing lowers expected reward

- Should Netflix award full prize to first successful contestant?
 - Intuit: Yes (under risk neutrality), sharing lowers expected reward
- Should Netflix publicly announce when a first success is obtained?
 - Intuit: Yes, values only one success, hiding lowers expected reward

- Should Netflix award full prize to first successful contestant?
 - Intuit: Yes (under risk neutrality), sharing lowers expected reward
- Should Netflix publicly announce when a first success is obtained?
 - Intuit: Yes, values only one success, hiding lowers expected reward
- $\rightarrow\,$ Intuition says "public winner-takes-all" contest is optimal
- $\rightarrow\,$ Indeed, dominates "hidden winner-takes-all" and "public shared-prize"

- Should Netflix award full prize to first successful contestant?
 - Intuit: Yes (under risk neutrality), sharing lowers expected reward
- Should Netflix publicly announce when a first success is obtained?
 - Intuit: Yes, values only one success, hiding lowers expected reward
- $\rightarrow\,$ Intuition says "public winner-takes-all" contest is optimal
- $\rightarrow\,$ Indeed, dominates "hidden winner-takes-all" and "public shared-prize"

But will show that it is often dominated by "hidden shared-prize"

Main results

- Optimal info. disclosure policy (within a class) and prize scheme
- Conditions for optimality of Public WTA and Hidden Shared-Prize
 - Tradeoff: \uparrow agent's reward for success versus \uparrow his belief he will succeed
- More generally, a Mixture contest is optimal

Main results

• Optimal info. disclosure policy (within a class) and prize scheme

- Conditions for optimality of Public WTA and Hidden Shared-Prize
 - Tradeoff: \uparrow agent's reward for success versus \uparrow his belief he will succeed
- More generally, a Mixture contest is optimal
- Other issues
 - 1 Social planner may also prefer hidden shared-prize to public WTA
 - 2 Why a contest? Optimal contest dominates piece rates

Literature

Contest design (no learning)

- Research contests: Taylor 95, Krishna-Morgan 98, Fullerton-McAffee 99, Moldovanu-Sela 01, Che-Gale 03
- Innovation contests: Bhattacharya et al. 90, Moscarini-Smith 11, Judd et al. 12

Strategic experimentation games

- Only info. externality: Bolton-Harris 99, Keller et al. 05, ...
- WTA contests: Choi 91, Malueg-Tsutsui 97, Mason-Välimäki 10, Moscarini-Squintani 10, Akcigit-Liu 13
- Other payoff externalities: Strulovici 10, Bonatti-Hörner 11, Cripps-Thomas 14

Mechanism design for experimentation

- Single-agent contracts: Bergemann-Hege 98, 05, ...
- Multiple agents & info. disclosure: Che-Hörner 13, Kremer et al. 13

Contests for Experimentation

Model

Model (1)

Build on exponential bandit framework

- Innovation feasibility or state is either good or bad
 - Persistent but (initially) unknown; prior on good is $p_0 \in (0,1)$
- At each $t \in [0,T]$, agent $i \in \mathcal{N}$ covertly chooses effort $a_{i,t} \in [0,1]$
 - Instantaneous cost of effort is $ca_{i,t}$, where c > 0
 - $\mathcal{N} := \{1, \dots, N\}$ is given; $T \geq 0$ will be chosen by principal
- If state is good and i exerts $a_{i,t}$, succeeds w/ inst. prob. $\lambda a_{i,t}$
 - No success if state is bad
 - Successes are conditionally independent given state

- Project success yields principal a payoff v > 0
 - Agents do not intrinsically care about success
 - Principal values only one success (specific innovation)
- Success is observable only to agent who succeeds and principal
 - Extensions: only agent or only principal observes success
- All parties are risk neutral and have quasi-linear preferences
 - Assume no discounting

Belief updating

■ Given effort profile {*a*_{*i*,*t*}}_{*i*,*t*}, let *p*_{*t*} be the public belief at *t*, i.e. posterior on good state when no-one succeeds by *t*:

$$p_{t} = \frac{p_{0}e^{-\int_{0}^{t} \lambda A_{s} ds}}{p_{0}e^{-\int_{0}^{t} \lambda A_{s} ds} + 1 - p_{0}}$$

where $A_t := \sum_j a_{j,t}$

Belief updating

■ Given effort profile {*a*_{*i*,*t*}}_{*i*,*t*}, let *p*_{*t*} be the public belief at *t*, i.e. posterior on good state when no-one succeeds by *t*:

$$p_{t} = \frac{p_{0}e^{-\int_{0}^{t} \lambda A_{s} ds}}{p_{0}e^{-\int_{0}^{t} \lambda A_{s} ds} + 1 - p_{0}}$$

where
$$A_t := \sum_j a_{j,t}$$

• Evolution of p_t governed by familiar differential equation

$$\dot{p}_t = -p_t \left(1 - p_t\right) \lambda A_t$$

Contests for Experimentation

First best

Efficient to stop after success; hence, social optimum maximizes

$$\int_{0}^{\infty} \left(v p_{t} \lambda - c \right) A_{t} \quad \overbrace{e^{-\int_{0}^{t} p_{s} \lambda A_{s} ds}}^{\operatorname{Prob. no success by } t} dt$$

First best

Efficient to stop after success; hence, social optimum maximizes

$$\int_{0}^{\infty} \left(v p_{t} \lambda - c \right) A_{t} \quad \overbrace{e^{-\int_{0}^{t} p_{s} \lambda A_{s} ds}}^{\text{Prob. no success by } t} dt$$

Since p_t decreasing, an efficient effort profile is $a_{i,t} = 1$ for all $i \in \mathcal{N}$ if $p_t \lambda v \ge c$ and no success by t; $a_{i,t} = 0$ for all $i \in \mathcal{N}$ otherwise

• Assume $p_0 \lambda v > c$. First-best stopping posterior belief is

$$p^{FB} := \frac{c}{\lambda v}$$

Contests for Experimentation

Principal's problem

Principal has a budget \overline{w} ; assume $p_0\lambda\overline{w} > c$

Maximizes amount of experimentation:

$$p_0\left(1 - e^{-\int_0^T \lambda A_t dt}\right)$$

Principal's problem

- Principal has a budget \overline{w} ; assume $p_0\lambda\overline{w} > c$
- Maximizes amount of experimentation:

$$p_0\left(1-e^{-\int_0^T\lambda A_t dt}\right)$$

- Mechanisms: payment rules and dynamic disclosure policies
 - s.t. limited liability & (ex-post) budget constraint

Contests: Subclass of mechanisms

Contests

- A contest specifies
 - 1 Deadline: $T \ge 0$
 - **2** Prizes: $w(s_i, s_{-i}) \ge 0$, where s_i is time at which *i* succeeds, s.t.
 - (i) Anonymity: $w(s_i, s_{-i}) = w(s_i, \sigma(s_{-i}))$ for any permutation σ

(ii) Wlog, 0 prize for no success: $w(\emptyset, \cdot) = 0$

3 Disclosure: T ⊆ [0, T] where outcome-history is publicly disclosed at each t ∈ T and nothing is disclosed at t ∉ T

Salient cases: public ($\mathcal{T} = [0, T]$) and hidden ($\mathcal{T} = \emptyset$)

Contests

- A contest specifies
 - 1 Deadline: $T \ge 0$
 - **2** Prizes: $w(s_i, s_{-i}) \ge 0$, where s_i is time at which *i* succeeds, s.t.
 - (i) Anonymity: $w(s_i, s_{-i}) = w(s_i, \sigma(s_{-i}))$ for any permutation σ

(ii) Wlog, 0 prize for no success: $w(\emptyset, \cdot) = 0$

- 3 Disclosure: T ⊆ [0, T] where outcome-history is publicly disclosed at each t ∈ T and nothing is disclosed at t ∉ T
 - Salient cases: public ($\mathcal{T} = [0, T]$) and hidden ($\mathcal{T} = \emptyset$)
- Strategies & Equilibrium
 - Wlog, $a_{i,t}$ is i's effort at t conditional on i not having succeeded by t
 - (Symmetric) Nash equilibria; refinements would not alter analysis

Contests for Experimentation

Public WTA Contest

■ Let *A*_{-*i*,*s*} be (*i*'s conjecture of) total effort by agents −*i* at *s* given no success by *s*. Then *i*'s problem reduces to

$$\max_{(a_{i,t})_{t\in[0,T]}} \int_0^T \left(\overline{w}p_{i,t}\lambda - c\right) a_{i,t} \xrightarrow{\text{prob. no one succeeds by } t} e^{-\int_0^t p_{i,s}\lambda(a_{i,s} + A_{-i,s})ds} dt$$

where
$$p_{i,t} = \frac{p_0 e^{-\int_0^t \lambda(a_{i,s} + A_{-i,s}) ds}}{p_0 e^{-\int_0^t \lambda(a_{i,s} + A_{-i,s}) ds} + 1 - p_0}$$

■ Let *A*_{-*i*,*s*} be (*i*'s conjecture of) total effort by agents −*i* at *s* given no success by *s*. Then *i*'s problem reduces to

$$\max_{(a_{i,t})_{t\in[0,T]}} \int_0^T \left(\overline{w}p_{i,t}\lambda - c\right) a_{i,t} \xrightarrow{\text{prob. no one succeeds by } t} e^{-\int_0^t p_{i,s}\lambda(a_{i,s} + A_{-i,s})ds} dt$$

where
$$p_{i,t} = \frac{p_0 e^{-\int_0^t \lambda(a_{i,s} + A_{-i,s}) ds}}{p_0 e^{-\int_0^t \lambda(a_{i,s} + A_{-i,s}) ds} + 1 - p_0}$$

•
$$p_{i,t} \downarrow \implies$$
 unique solution: $a_{i,t} = \begin{cases} 1 & \text{if } p_{i,t} \ge p^{PW} \\ 0 & \text{otherwise} \end{cases}$
where $p^{PW} := \frac{c}{\lambda \overline{w}}$

Contests for Experimentation

For any T, unique equilibrium: all agents exert $a_{i,t} = 1$ until either a success occurs or public belief reaches p^{PW} (or T binds), then stop

- For any T, unique equilibrium: all agents exert a_{i,t} = 1 until either a success occurs or public belief reaches p^{PW} (or T binds), then stop
- Deadline T is optimal iff $T \ge T^{PW}$, where

$$\frac{p_0 e^{-N\lambda T^{PW}}}{p_0 e^{-N\lambda T^{PW}} + 1 - p_0} = \frac{c}{\lambda \overline{w}}$$

- For any T, unique equilibrium: all agents exert a_{i,t} = 1 until either a success occurs or public belief reaches p^{PW} (or T binds), then stop
- Deadline T is optimal iff $T \ge T^{PW}$, where

$$\frac{p_0 e^{-N\lambda T^{PW}}}{p_0 e^{-N\lambda T^{PW}} + 1 - p_0} = \frac{c}{\lambda \overline{w}}$$

• *Remark*: Amount of experimentation is invariant to N

Hidden WTA Contest

Now *i*'s problem is

$$\max_{(a_{i,t})_{t\in[0,T]}} \int_0^T \left(\overline{w} p_{i,t}^{(1)} \lambda \underbrace{e^{-\int_0^t \lambda A_{-i,s} ds}}_{\text{prob. all } -i \text{ fail until } t \text{ given } G} - c\right) a_{i,t} \underbrace{e^{-\int_0^t p_{i,s}^{(1)} \lambda a_{i,s} ds}}_{e^{-\int_0^t p_{i,s}^{(1)} \lambda a_{i,s} ds}} dt,$$

where $p_{i,t}^{(1)}$ is *i*'s private belief given he did not succeed by *t*:

$$p_{i,t}^{(1)} = \frac{p_0 e^{-\int_0^t \lambda a_{i,s} ds}}{p_0 e^{-\int_0^t \lambda a_{i,s} ds} + 1 - p_0}$$

Contests for Experimentation

Halac, Kartik, Liu

• Unique solution:
$$a_{i,t} = \begin{cases} 1 & \text{if } \overline{w} p_{i,t}^{(1)} \lambda e^{-\int_0^t \lambda A_{-i,s} ds} \ge c \\ 0 & \text{otherwise} \end{cases}$$

Unique equilibrium is symmetric

• Unique solution:
$$a_{i,t} = \begin{cases} 1 & \text{if } \overline{w} p_{i,t}^{(1)} \lambda e^{-\int_0^t \lambda A_{-i,s} ds} \ge c \\ 0 & \text{otherwise} \end{cases}$$

Unique equilibrium is symmetric

• The stopping time T^{HW} is given by

$$\frac{p_0 e^{-N\lambda T^{HW}}}{p_0 e^{-\lambda T^{HW}} + 1 - p_0} = \frac{c}{\lambda \overline{w}}$$

Contests for Experimentation

Halac, Kartik, Liu

• Unique solution:
$$a_{i,t} = \begin{cases} 1 & \text{if } \overline{w} p_{i,t}^{(1)} \lambda e^{-\int_0^t \lambda A_{-i,s} ds} \ge c \\ 0 & \text{otherwise} \end{cases}$$

Unique equilibrium is symmetric

• The stopping time T^{HW} is given by

$$\frac{p_0 e^{-N\lambda T^{HW}}}{p_0 e^{-\lambda T^{HW}} + 1 - p_0} = \frac{c}{\lambda \overline{w}} = \frac{p_0 e^{-N\lambda T^{PW}}}{p_0 e^{-N\lambda T^{PW}} + 1 - p_0}$$

 \blacksquare Hence, $T^{HW} < T^{PW} \rightarrow$ Strictly dominated by public WTA

Contests for Experimentation

Halac, Kartik, Liu

Public Shared-Prize Contests
Now i's problem is

 $\max_{(a_{i,t})_{t\in[0,T]}} \int_{0}^{T} \left[(w_{i,t}p_{i,t}\lambda - c) a_{i,t} + p_{i,t}\lambda A_{-i,t}u_{i,t} \right] \underbrace{e^{-\int_{0}^{t} p_{i,s}\lambda(a_{i,s} + A_{-i,s})ds}}_{e^{-\int_{0}^{t} p_{i,s}\lambda(a_{i,s} + A_{-i,s})ds} dt$

where $w_{i,t}$ is *i*'s expected reward if he succeeds at t and $u_{i,t}$ is his continuation payoff if some -i succeeds at t

• dependence on strategies suppressed

Now i's problem is

 $\max_{(a_{i,t})_{t\in[0,T]}} \int_0^T \left[\left(w_{i,t} p_{i,t} \lambda - c \right) a_{i,t} + p_{i,t} \lambda A_{-i,t} u_{i,t} \right] \underbrace{e^{-\int_0^t p_{i,s} \lambda (a_{i,s} + A_{-i,s}) ds}}_{e^{-\int_0^t p_{i,s} \lambda (a_{i,s} + A_{-i,s}) ds} dt$

where $w_{i,t}$ is *i*'s expected reward if he succeeds at t and $u_{i,t}$ is his continuation payoff if some -i succeeds at t

• dependence on strategies suppressed

Since $u_{i,t} \geq 0$ $a_{i,t} > 0 \implies p_{i,t} \geq rac{c}{w_{i,t}\lambda}$

Contests for Experimentation

Now i's problem is

 $\max_{(a_{i,t})_{t\in[0,T]}} \int_{0}^{T} \left[\left(w_{i,t}p_{i,t}\lambda - c \right) a_{i,t} + p_{i,t}\lambda A_{-i,t}u_{i,t} \right] \underbrace{e^{-\int_{0}^{t} p_{i,s}\lambda(a_{i,s} + A_{-i,s})ds}}_{e^{-\int_{0}^{t} p_{i,s}\lambda(a_{i,s} + A_{-i,s})ds} dt$

where $w_{i,t}$ is *i*'s expected reward if he succeeds at t and $u_{i,t}$ is his continuation payoff if some -i succeeds at t

• dependence on strategies suppressed

• Since
$$u_{i,t} \ge 0$$
 and $w_{i,t} \le \overline{w}$,
 $a_{i,t} > 0 \implies p_{i,t} \ge \frac{c}{w_{i,t}\lambda} \ge \frac{c}{\overline{w}\lambda} = p^{PW}$

Contests for Experimentation

Now i's problem is

 $\max_{(a_{i,t})_{t\in[0,T]}} \int_0^T \left[(w_{i,t}p_{i,t}\lambda - c) a_{i,t} + p_{i,t}\lambda A_{-i,t}u_{i,t} \right] \underbrace{e^{-\int_0^t p_{i,s}\lambda(a_{i,s} + A_{-i,s})ds}}_{e^{-\int_0^t p_{i,s}\lambda(a_{i,s} + A_{-i,s})ds}} dt$

where $w_{i,t}$ is *i*'s expected reward if he succeeds at t and $u_{i,t}$ is his continuation payoff if some -i succeeds at t

• dependence on strategies suppressed

Since $u_{i,t} \ge 0$ and $w_{i,t} \le \overline{w}$,

$$a_{i,t} > 0 \implies p_{i,t} \ge \frac{c}{w_{i,t}\lambda} \ge \frac{c}{\overline{w}\lambda} = p^{PW}$$

 \rightarrow Dominated by public WTA (strictly if different)

Contests for Experimentation

Halac, Kartik, Liu

Hidden Shared-Prize Contests

Hidden shared-prize contest

Proposition

Among hidden contests, an optimal prize scheme is equal sharing: for any number of successful agents $n \in \mathcal{N}$, $w_i = \frac{\overline{w}}{n} \forall i \in \{1, ..., n\}$.

Hidden shared-prize contest

Proposition

Among hidden contests, an optimal prize scheme is equal sharing: for any number of successful agents $n \in \mathcal{N}$, $w_i = \frac{\overline{w}}{n} \forall i \in \{1, ..., n\}$.

Idea of Proof:

- Without loss to consider a prize regime that induces full effort equilibrium
- Equal sharing implies constant sequence of expected rewards and stopping time T^{HS} s.t. agent's IC constraint binds at each $t \in [0, T^{HS}]$
- Hence, cannot induce more experimentation with non-constant reward sequence (if $T > T^{HS}$, IC constraint is violated at some $t \leq T$)

■ Under equal sharing, *i*'s problem is

$$\max_{(a_{i,t})_{t\in[0,T]}} \int_0^T \left(w_i p_{i,t}^{(1)} \lambda - c \right) a_{i,t} \underbrace{e^{-\int_0^t p_{i,s}^{(1)} \lambda a_{i,s} ds}}_{\text{prob. } i \text{ does not succeed by } t} dt$$

■ Under **equal sharing**, *i*'s problem is

$$\max_{(a_{i,t})_{t\in[0,T]}} \int_0^T \left(\frac{w_i p_{i,t}^{(1)} \lambda - c}{a_{i,t}} \right) a_{i,t} \underbrace{e^{-\int_0^t p_{i,s}^{(1)} \lambda a_{i,s} ds}}_{e^{-\int_0^t p_{i,s}^{(1)} \lambda a_{i,s} ds}} dt$$

• An optimal strategy is $a_{i,t} = 1$ if $w_i p_{i,t}^{(1)} \lambda \ge c$ and $a_{i,t} = 0$ otherwise

• Consider symmetric eqa characterized by stopping time T^{HS}

Contests for Experimentation

• Given T^{HS} , the expected reward for success is

$$w = \overline{w} \mathbb{E}_n \left[\frac{1}{n} \; \left| n \ge 1, T^{HS} \right] \right]$$

• Given T^{HS} , the expected reward for success is

$$w = \overline{w} \mathbb{E}_{n} \left[\frac{1}{n} \left| n \ge 1, T^{HS} \right] \right]$$
$$= \overline{w} \sum_{m=0}^{N-1} \left(\frac{1}{m+1} \right) \binom{N-1}{m} \underbrace{\left(1 - e^{-\lambda T^{HS}} \right)^{m}}_{\text{Prob. } N - 1 - m} \underbrace{e^{-(N-1-m)\lambda T^{HS}}}_{\text{Prob. } N - 1 - m}$$

Prob. *m* opponents succeed by T^{HS} in G

-mopponents fail in G

• Given T^{HS} , the expected reward for success is

$$\begin{split} w &= \overline{w} \mathbb{E}_n \left[\frac{1}{n} \ \left| n \ge 1, T^{HS} \right] \right] \\ &= \overline{w} \sum_{m=0}^{N-1} \left(\frac{1}{m+1} \right) \binom{N-1}{m} \underbrace{\left(1 - e^{-\lambda T^{HS}} \right)^m}_{\substack{\text{Prob. } m \text{ opponents} \\ \text{succeed by } T^{HS} \text{ in } G}} \underbrace{e^{-(N-1-m)\lambda T^{HS}}}_{\substack{\text{Opponents fail in } G}} \end{split}$$

• Equilibrium T^{HS} solves

which has a unique solution; hence essentially unique symmetric eqm

Remark: Amount of experimentation can be non-monotonic in N

Contests for Experimentation

Halac, Kartik, Liu

Public WTA vs. Hidden Equal-Sharing

Public winner-takes-all versus hidden equal-sharing

• T^{PW} and T^{HS} satisfy respectively

$$\frac{p_0 e^{-N\lambda T^{PW}}}{p_0 e^{-\lambda T^{HS}} + 1 - p_0} = \frac{c}{\lambda \overline{w}}$$
$$\frac{p_0 e^{-\lambda T^{HS}}}{p_0 e^{-\lambda T^{HS}} + 1 - p_0} \mathbb{E}_n \left[\frac{1}{n} \mid n \ge 1, T^{HS}\right] = \frac{c}{\lambda \overline{w}}$$

Contests for Experimentation

Halac, Kartik, Liu

Public winner-takes-all versus hidden equal-sharing

Contests for Experimentation

Halac, Kartik, Liu

Result for public vs. hidden

Proposition

Among public and hidden contests, if

$$\frac{p_0 e^{-\lambda T^{PW}}}{p_0 e^{-\lambda T^{PW}} + 1 - p_0} \frac{1 - e^{-\lambda N T^{PW}}}{(1 - e^{-\lambda T^{PW}})N} > \frac{c}{\lambda \overline{w}}$$

then a hidden equal-sharing contest is optimal.

Otherwise, a public winner-takes-all contest is optimal.

Result for public vs. hidden

Proposition

Among public and hidden contests, if

$$\frac{p_0 e^{-\lambda T^{PW}}}{p_0 e^{-\lambda T^{PW}} + 1 - p_0} \frac{1 - e^{-\lambda N T^{PW}}}{(1 - e^{-\lambda T^{PW}})N} > \frac{c}{\lambda \overline{w}}$$

then a hidden equal-sharing contest is optimal.

Otherwise, a public winner-takes-all contest is optimal.

Note: If principal can choose N, HS can replicate PW by setting N = 1

Intuition: Necessary and sufficient conditions

 \blacksquare Condition for N=2 is

$$\frac{\overline{w}}{2}\lambda > c$$

 \rightarrow i would continue experimenting to earn half prize if he knew state is good, or equivalently, if he knew opponent succeeded

Intuition: Necessary and sufficient conditions

 \blacksquare Condition for N=2 is

$$\frac{\overline{w}}{2}\lambda > c$$

 \rightarrow i would continue experimenting to earn half prize if he knew state is good, or equivalently, if he knew opponent succeeded

• A sufficient condition for any N>2 is

$$\frac{\overline{w}}{N}\lambda \ge c$$

Intuition: Discussion

- Relative to public WTA, why can hidden shared-prize help but neither public shared-prize nor hidden WTA can?
 - Want to hide info. to bolster agent's belief when no-one has succeeded
 - But hiding is counter-productive if WTA
 - \implies to harness benefits of hiding info., must share prize
 - Public shared-prize no help: only \uparrow effort when it does not benefit P
 - and can hurt because of free-riding

Intuition: Discussion

- Relative to public WTA, why can hidden shared-prize help but neither public shared-prize nor hidden WTA can?
 - Want to hide info. to bolster agent's belief when no-one has succeeded
 - But hiding is counter-productive if WTA
 - \implies to harness benefits of hiding info., must share prize
 - Public shared-prize no help: only \uparrow effort when it does not benefit P
 - and can hurt because of free-riding
- Public WTA optimal if $p_0 = 1$ or arms uncorrelated
 - no learning from others \implies no benefit to hiding info
 - most patent design papers assume p₀ = 1 hence "patent"

Other Disclosure Policies

Simple disclosure policies

Principal specifies $\mathcal{T} \subseteq [0, T]$ such that outcome-history publicly disclosed at each $t \in \mathcal{T}$ and nothing disclosed at any $t \notin \mathcal{T}$

Simple disclosure policies

Principal specifies $\mathcal{T} \subseteq [0, T]$ such that outcome-history publicly disclosed at each $t \in \mathcal{T}$ and nothing disclosed at any $t \notin \mathcal{T}$

Proposition

An optimal contest is a mixture contest that implements public winner-takes-all from 0 until t_S and hidden equal-sharing from t_S until T.

Idea of Proof: Take arbitrary contest with disclosure \mathcal{T} and let $t' = \sup\{t : t \in \mathcal{T}\}$. Dominated by mixture contest with $t_S = t'$

Simple disclosure policies

Principal specifies $\mathcal{T} \subseteq [0, T]$ such that outcome-history publicly disclosed at each $t \in \mathcal{T}$ and nothing disclosed at any $t \notin \mathcal{T}$

Proposition

An optimal contest is a mixture contest that implements public winner-takes-all from 0 until t_S and hidden equal-sharing from t_S until T. Moreover:

1 If
$$\overline{w}\lambda/N > c$$
 then $t_S = 0$ (hidden equal-sharing).

2 If $\overline{w}\lambda/2 < c$ then $t_S = T$ (public WTA).

Idea of Proof: Take arbitrary contest with disclosure \mathcal{T} and let $t' = \sup\{t : t \in \mathcal{T}\}$. Dominated by mixture contest with $t_S = t'$

Contests for Experimentation

Example: Optimal mixture contest

• $t_S \uparrow \Longrightarrow$ from t_S on, belief \downarrow but expected reward \uparrow

Contests for Experimentation

Halac, Kartik, Liu

Conclusions

- Hidden equal-sharing often dominates public WTA (even for planner)
 - Only hiding info. or dividing prize hurts, but together can help
- Conditions for optimality of these contests

- Broader contributions
 - contest design in an environment with learning
 - 2 mechanism design—payments and info. disclosure—to multi-agent strategic experimentation

Thank you!

Contests for experimentation

- R&D competition, patent races
- Increased use of contests to achieve specific innovations
 - McKinsey report: huge increase in large prizes in last 35 years. 78% of new prize money since 1991 is inducement for specific goals
 - New intermediaries such as Changemakers, Idea Crossing, X Prize
 - America Competes Reauthorization Act signed by Obama in 2011
- Many examples
 - British Parliament's longitude prize,
 - Orteig prize
 - X Prizes: Ansari, Google Lunar, Progressive Automotive
 - Methuselah Foundation: Mouse Prize, NewOrgan Liver Prize

Mechanisms

- \blacksquare Principal has budget $\overline{w}>0$ to incentivize agents' effort
 - Assume $p_0 \lambda \overline{w} > c$
- In general, a (limited-liability) mechanism specifies
 - 1 Deadline $T \ge 0$
 - 2 Vector of payments $(w_1, \ldots, w_N) \in \mathbb{R}^N_+$ that are made at T
 - \rightarrow as function of principal's info at T and subject to $\sum\limits_{i\in\mathcal{N}}w_i\leq\overline{w}$
 - **3** Information disclosure policy (signal of history for each agent at each t)
- Strategy for i specifies $a_{i,t}$ for each t given i's information at t

Observability of success

- If principal observes success but not agent, results readily extend
 - A will condition on failure; P has no reason to hide success from A

Observability of success

If principal observes success but not agent, results readily extend

- A will condition on failure; P has no reason to hide success from A
- More subtle: principal does not observe success directly; any agent who succeeds can choose when to verifiably reveal his success
 - Winner-takes-all: dominant for agent to reveal when succeeds
 - Hidden success: equal sharing optimal, outcome unchanged
 - Thus, under same condition, hidden ES dominates public WTA

◀ Back

Implications for the planner's problem

Hidden shared-prize contest can be optimal for principal who does not internalize effort costs. How about social planner?

Implications for the planner's problem

- Hidden shared-prize contest can be optimal for principal who does not internalize effort costs. How about social planner?
- Suppose social planner has only $\overline{w} < v$ to reward agents
 - · Likely if social value of discovery high, e.g. medical innovations
- Then even social planner will sometimes prefers hidden equal-sharing, as public winner-takes-all induces less than efficient experimentation
 - Ex post, planner induces wasteful experimentation after discovery made

▲ Back

Why contests?

Instead of a contest, suppose principal uses piece rates

- Payment to *i*, w_i , independent of others' outcomes, with $\sum_i w_i \leq \overline{w}$
- Assume independent of time (just a bonus for success)

Why contests?

Instead of a contest, suppose principal uses piece rates

- Payment to i, w_i , independent of others' outcomes, with $\sum_i w_i \leq \overline{w}$
- Assume independent of time (just a bonus for success)

Proposition

- **1** Optimal piece rate has hidden success and pays $\frac{\overline{w}}{k^*}$ to each of $1 \le k^* \le N$ agents; zero to all others.
- 2 This piece rate dominates public winner-takes-all contest, But is dominated by hidden equal-sharing contest if principal can choose N.
 - Domination statements strict if $k^* > 1$
Intuition: Contests versus piece rates

A piece rate can implement the public winner-takes-all outcome

• Pay \overline{w} for success to one agent

But gives less experimentation than hidden equal-sharing with k*:

- Stopping rule in optimal piece rate: $p_{i,T}^{(1)}\lambda \frac{\overline{w}}{k^*} = c$
- Stopping rule in hidden equal-sharing: $\frac{1-e^{-k^*\lambda T}}{1-e^{-\lambda T}}p_{i,T}^{(1)}\lambda \frac{\overline{w}}{k^*} = c$

