・ロト・日本・モート・モーンの1918

Variational approach to mean field games with density constraints

Alpár Richárd Mészáros

LMO, Université Paris-Sud

(based on ongoing joint works with F. Santambrogio, P. Cardaliaguet and F. J. Silva)

CONFERENCE ON OPTIMIZATION, TRANSPORTATION AND EQUILIBRIUM IN ECONOMICS, SEPT. 15-19, 2014, TORONTO

・ロト・日本・モート・モーンののでの
2/18

The content of the talk

- Basic models of Mean Field Games, after J.-M. Lasry and P.-L. Lions
- Variational approaches for MFGs
- A link with Optimal Transport and its Benamou-Brenier formulation
- Second order stationary MFGs
- Treating density constraints and penalizations for second order stationary MFGs
- Summary, works in progress and open questions

 This theory was introduced recently (in 2006-2007) by J.-M. Lasry and P.-L. Lions^{12 3} in a series of papers and a series of lectures by P.-L. Lions at Collège de France;

¹Lasry, J.-M., Lions, P.-L. Jeux à champ moyen I. Le cas stationnaire, *C. R. Math. Acad. Sci. Paris*, (2006).

²Lasry, J.-M., Lions, P.-L. Jeux à champ moyen II. Horizon fini et contrôle optimal, *C. R. Math. Acad. Sci. Paris*, (2006).

- This theory was introduced recently (in 2006-2007) by J.-M. Lasry and P.-L. Lions^{12 3} in a series of papers and a series of lectures by P.-L. Lions at Collège de France;
- Analysis of differential games with a very large number of "small" players (agents);

¹Lasry, J.-M., Lions, P.-L. Jeux à champ moyen I. Le cas stationnaire, *C. R. Math. Acad. Sci. Paris*, (2006).

²Lasry, J.-M., Lions, P.-L. Jeux à champ moyen II. Horizon fini et contrôle optimal, *C. R. Math. Acad. Sci. Paris*, (2006).

- This theory was introduced recently (in 2006-2007) by J.-M. Lasry and P.-L. Lions^{12 3} in a series of papers and a series of lectures by P.-L. Lions at Collège de France;
- Analysis of differential games with a very large number of "small" players (agents);
- The models are derived from a "continuum limit", letting the number of agents go to infinity (similarly to mean field limit in Statistical Mechanics and Physics → Bolzmann or Vlasov equations)

¹Lasry, J.-M., Lions, P.-L. Jeux à champ moyen I. Le cas stationnaire, *C. R. Math. Acad. Sci. Paris*, (2006).

²Lasry, J.-M., Lions, P.-L. Jeux à champ moyen II. Horizon fini et contrôle optimal, *C. R. Math. Acad. Sci. Paris*, (2006).

- This theory was introduced recently (in 2006-2007) by J.-M. Lasry and P.-L. Lions^{12 3} in a series of papers and a series of lectures by P.-L. Lions at Collège de France;
- Analysis of differential games with a very large number of "small" players (agents);
- The models are derived from a "continuum limit", letting the number of agents go to infinity (similarly to mean field limit in Statistical Mechanics and Physics → Bolzmann or Vlasov equations)
- Real life applications in Economy, Finance and Social Sciences
- ¹Lasry, J.-M., Lions, P.-L. Jeux à champ moyen I. Le cas stationnaire, *C. R. Math. Acad. Sci. Paris*, (2006).

²Lasry, J.-M., Lions, P.-L. Jeux à champ moyen II. Horizon fini et contrôle optimal, *C. R. Math. Acad. Sci. Paris*, (2006).

A typical model for second order MFG

$$\begin{cases} (i) & -\partial_t u + \nu \Delta u + H(x, m, \nabla u) = f(x, m) & \text{in } (0, T) \times \mathbb{R}^d \\ (ii) & \partial_t m - \nu \Delta m - \nabla \cdot (\nabla_p H(x, m, \nabla u)m) = 0 & \text{in } (0, T) \times \mathbb{R}^d \\ (iii) & m(0) = m_0, u(T, x) = G(x, m(T)) & \text{in } \mathbb{R}^d. \end{cases}$$

$$(1)$$

A typical model for second order MFG

$$\begin{cases} (i) & -\partial_t u + \nu \Delta u + H(x, m, \nabla u) = f(x, m) & \text{in } (0, T) \times \mathbb{R}^d \\ (ii) & \partial_t m - \nu \Delta m - \nabla \cdot (\nabla_p H(x, m, \nabla u)m) = 0 & \text{in } (0, T) \times \mathbb{R}^d \\ (iii) & m(0) = m_0, u(T, x) = G(x, m(T)) & \text{in } \mathbb{R}^d. \end{cases}$$
(1)

 Assumptions: ν ≥ 0 is a parameter; the Hamiltonian H is convex in its last variable; m₀ (and m(t)) is the density of a probability measure;

A typical model for second order MFG

$$\begin{cases} (i) & -\partial_t u + \nu \Delta u + H(x, m, \nabla u) = f(x, m) & \text{in } (0, T) \times \mathbb{R}^d \\ (ii) & \partial_t m - \nu \Delta m - \nabla \cdot (\nabla_p H(x, m, \nabla u)m) = 0 & \text{in } (0, T) \times \mathbb{R}^d \\ (iii) & m(0) = m_0, u(T, x) = G(x, m(T)) & \text{in } \mathbb{R}^d. \end{cases}$$
(1)

- Assumptions: ν ≥ 0 is a parameter; the Hamiltonian H is convex in its last variable; m₀ (and m(t)) is the density of a probability measure;
- *u* is the value function of an arbitrary agent, *m* is the distribution of the agents;

A heustistical interpretation

• An arbitrary agent controls the stochastic differential equation

$$\mathrm{d}X_t = \alpha_t \mathrm{d}t + \sqrt{2\nu} \mathrm{d}B_t,$$

where B_t is a standard Brownian motion.

A heustistical interpretation

An arbitrary agent controls the stochastic differential equation

$$\mathrm{d}X_t = \alpha_t \mathrm{d}t + \sqrt{2\nu} \mathrm{d}B_t,$$

where B_t is a standard Brownian motion.

He aims at minimizing the quantity

$$\mathbb{E}\left[\int_0^T L(X_s, m(s), \alpha_s) + f(X_s, m(s)) \mathrm{d}s + G(X_T, m(T))\right],\$$

where L is the usual Legendre-Flenchel conjugate of H w.r.t. the p variable.

A heustistical interpretation

• An arbitrary agent controls the stochastic differential equation

$$\mathrm{d}X_t = \alpha_t \mathrm{d}t + \sqrt{2\nu} \mathrm{d}B_t,$$

where B_t is a standard Brownian motion.

• He aims at minimizing the quantity

$$\mathbb{E}\left[\int_0^T L(X_s, m(s), \alpha_s) + f(X_s, m(s)) \mathrm{d}s + G(X_T, m(T))\right],\$$

where L is the usual Legendre-Flenchel conjugate of H w.r.t. the p variable.

 His optimal control is (at least heuristically) given in feedback form by α^{*}(t, x) = −∇_pH(x, m, ∇u).

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 つらで
6/18

A typical model of first order MFG system

• A typical model for a first order (deterministic) MFG system is the following:

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 つらで
6/18

A typical model of first order MFG system

• A typical model for a first order (deterministic) MFG system is the following:

$$\begin{cases} (i) & -\partial_t u(t,x) + \frac{1}{2} |\nabla u(t,x)|^2 = f(x,m(t)) & \text{in } (0,T) \times \mathbb{R}^d \\ (ii) & \partial_t m(t,x) - \nabla \cdot (\nabla u(t,x)m(t,x)) = 0 & \text{in } (0,T) \times \mathbb{R}^d \\ (iii) & m(0) = m_0, u(T,x) = G(x,m(T)) & \text{in } \mathbb{R}^d. \end{cases}$$

$$(2)$$

A typical model of first order MFG system

• A typical model for a first order (deterministic) MFG system is the following:

$$\begin{cases} (i) & -\partial_t u(t,x) + \frac{1}{2} |\nabla u(t,x)|^2 = f(x,m(t)) & \text{in } (0,T) \times \mathbb{R}^d \\ (ii) & \partial_t m(t,x) - \nabla \cdot (\nabla u(t,x)m(t,x)) = 0 & \text{in } (0,T) \times \mathbb{R}^d \\ (iii) & m(0) = m_0, u(T,x) = G(x,m(T)) & \text{in } \mathbb{R}^d. \end{cases}$$

$$(2)$$

 u corresponds to the value function of a typical agent who controls his velocity α(t) and has to minimize his cost

$$\int_0^T \left(\frac{1}{2}|\alpha(t)|^2 + f(x(t), m(t))\right) \mathrm{d}t + G(x(T), m(T)),$$

where $x'(s) = \alpha(s)$ and $x(0) = x_0$.

A typical model of first order MFG system

• A typical model for a first order (deterministic) MFG system is the following:

$$\begin{cases} (i) & -\partial_t u(t,x) + \frac{1}{2} |\nabla u(t,x)|^2 = f(x,m(t)) & \text{in } (0,T) \times \mathbb{R}^d \\ (ii) & \partial_t m(t,x) - \nabla \cdot (\nabla u(t,x)m(t,x)) = 0 & \text{in } (0,T) \times \mathbb{R}^d \\ (iii) & m(0) = m_0, u(T,x) = G(x,m(T)) & \text{in } \mathbb{R}^d. \end{cases}$$

$$(2)$$

 u corresponds to the value function of a typical agent who controls his velocity α(t) and has to minimize his cost

$$\int_0^T \left(\frac{1}{2} |\alpha(t)|^2 + f(x(t), m(t))\right) dt + G(x(T), m(T)),$$

where $x'(s) = \alpha(s)$ and $x(0) = x_0$.

• The distribution of the other agents is represented by the density m(t). Then their "feedback strategy" is given by $\alpha(t, x) = -\nabla u(t, x)$.

The variational formulation

• We can obtain the solution of the system (2) by minimization of a global functional:

$$\min \int_0^T \int_\Omega \left(\frac{1}{2} |\alpha(t,x)|^2 \rho(t,x) + F(\rho(t,x))\right) \, \mathrm{d}x \, \mathrm{d}t - \int_\Omega G(x) \rho(T,x) \, \mathrm{d}x,$$

among solutions (ρ, α) of the continuity equation $\partial_t \rho + \nabla \cdot (\rho \alpha) = 0$ with the initial datum $\rho(0, x) = \rho_0(x)$.

⁵P. Cardaliaguet, P.J. Graber, Mean field games systems of first order, *preprint*

 $^{^{\}rm 4}{\rm P.}$ Cardaliaguet, Week solutions for first order mean field games with local coupling, preprint

The variational formulation

• We can obtain the solution of the system (2) by minimization of a global functional:

$$\min \int_0^T \int_\Omega \left(\frac{1}{2} |\alpha(t,x)|^2 \rho(t,x) + F(\rho(t,x))\right) \, \mathrm{d}x \, \mathrm{d}t - \int_\Omega G(x) \rho(T,x) \, \mathrm{d}x,$$

among solutions (ρ, α) of the continuity equation $\partial_t \rho + \nabla \cdot (\rho \alpha) = 0$ with the initial datum $\rho(0, x) = \rho_0(x)$.

 Recently many interesting results in this variational direction, see for instance the works of P. Cardaliaguet and P. J. Graber⁴, ⁵

⁵P. Cardaliaguet, P.J. Graber, Mean field games systems of first order, *preprint*

⁴P. Cardaliaguet, Week solutions for first order mean field games with local coupling, *preprint*

The variational formulation

• We can obtain the solution of the system (2) by minimization of a global functional:

$$\min \int_0^T \int_\Omega \left(\frac{1}{2} |\alpha(t,x)|^2 \rho(t,x) + F(\rho(t,x))\right) \, \mathrm{d}x \, \mathrm{d}t - \int_\Omega G(x) \rho(T,x) \, \mathrm{d}x,$$

among solutions (ρ, α) of the continuity equation $\partial_t \rho + \nabla \cdot (\rho \alpha) = 0$ with the initial datum $\rho(0, x) = \rho_0(x)$.

- Recently many interesting results in this variational direction, see for instance the works of P. Cardaliaguet and P. J. Graber⁴, ⁵
- $F(x, \cdot)' = f(x, \cdot)$ and it is convex. The above functional recalls the functional studied by Benamou and Brenier to give a dynamical formulation of optimal transport.

⁴P. Cardaliaguet, Week solutions for first order mean field games with local coupling, *preprint*

⁵P. Cardaliaguet, P.J. Graber, Mean field games systems of first order, *preprint*

Optimal transportation and its Benamou-Brenier formulation

For two (regular enough) probability measures μ, ν ∈ P(Ω) we define

$$W_2^2(\mu,\nu) := \inf\left\{\int_{\Omega} \frac{1}{2} |x - T(x)|^2 \, \mathrm{d}\mu : T : \Omega \to \Omega, \, T_{\#}\mu = \nu\right\}$$

- Teorem [Y. Brenier, '87]: Under suitable assumptions there exists *T* (optimal transport map) which is a gradient of a convex function.
- We can solve this problem via a dynamic formulation due to J.-D. Benamou and Y. Brenier, '00:

$$\min_{\alpha} \left\{ \int_0^1 \int_{\Omega} \frac{1}{2} |\alpha_t|^2 \, \mathrm{d}\rho_t \mathrm{d}t : \ \partial_t \rho_t + \nabla \cdot (\rho_t \alpha_t) = \mathbf{0}, \rho_0 = \mu, \rho_1 = \nu \right\}$$

• W_2 metrizes the weak-* topology on $\mathcal{P}(\Omega)$ for compact domains Ω .

The case of density penalization

• To treat density constraints for MFGs we consider the case $f(\rho) = \rho^{n-1} (n > 1)$ (in this case $F(\rho) = \frac{1}{n} \rho^n$)

The case of density penalization

- To treat density constraints for MFGs we consider the case $f(\rho) = \rho^{n-1} (n > 1)$ (in this case $F(\rho) = \frac{1}{n} \rho^n$)
- Now the question is what happens in the above minimization problem as $n \to \infty$.

The case of density penalization

- To treat density constraints for MFGs we consider the case $f(\rho) = \rho^{n-1} (n > 1)$ (in this case $F(\rho) = \frac{1}{n} \rho^n$)
- Now the question is what happens in the above minimization problem as $n \to \infty$.
- We will have in the limit

$$\min \int_0^T \int_\Omega \frac{1}{2} |\alpha(t,x)|^2 \rho(t,x) \, \mathrm{d}x \mathrm{d}t - \int_\Omega G(x) \rho(T,x) \mathrm{d}x,$$

with the same assumptions as above and with the additional assumption that $\rho(t, x) \leq 1$ a.e.

・ロト・日本・モート・モート モージョン(8)

The case of density penalization

- To treat density constraints for MFGs we consider the case $f(\rho) = \rho^{n-1} (n > 1)$ (in this case $F(\rho) = \frac{1}{n} \rho^n$)
- Now the question is what happens in the above minimization problem as $n \to \infty$.
- We will have in the limit

$$\min \int_0^T \int_\Omega \frac{1}{2} |\alpha(t,x)|^2 \rho(t,x) \, \mathrm{d}x \mathrm{d}t - \int_\Omega G(x) \rho(T,x) \mathrm{d}x,$$

with the same assumptions as above and with the additional assumption that $\rho(t, x) \leq 1$ a.e.

 However it is not not that clear how to define the equilibria and what are the optimality conditions (the MFG system) in the limit
 → subject of an ongoing work with P. Cardaliaguet and F. Santambrogio.

Stationary second order MFGs

 Stationary MFG systems could be seen as long time average of time-dependent ones (see the original papers of Lasry and Lions and ⁶)

⁶P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, Long time average of mean field games with a nonlocal coupling, *SIAM J. Contr. Optim.*, (2013)

Stationary second order MFGs

- Stationary MFG systems could be seen as long time average of time-dependent ones (see the original papers of Lasry and Lions and ⁶)
- One can prove the convergence (in a reasonable sense as $T \to +\infty$) of the solutions of the system

$$\begin{cases} -\partial_t u^T - \Delta u^T + \frac{1}{2} |\nabla u^T|^2 = f(x, m^T), \\ \partial_t m^T - \Delta m^T - \nabla \cdot (m^T \nabla u^T) = 0, \\ m^T(0) = m_0, \ u^T(T) = G \end{cases}$$

to the solutions of the ergodic system

$$\begin{cases} \lambda - \Delta u + \frac{1}{2} |\nabla u|^2 = f(x, m), \\ -\Delta m - \nabla \cdot (m \nabla u) = 0, \\ \int_{\Omega} m = 1, \ \int_{\Omega} u = 0. \end{cases}$$

⁶P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, A. Porretta, Long time average of mean field games with a nonlocal coupling, *SIAM J. Contr. Optim.*, (2013)

<ロト < 聞 > < 臣 > < 臣 > 臣 ?1918

Treating directly the density constraint

 The ergodic problem corresponds to the optimality conditions of the following optimization problem in a bounded open set Ω ⊂ ℝ^d

$$\min_{(m,w)} \mathcal{L}_2(m,w) + \mathcal{F}(m), \qquad (P_2)$$

subject to $-\Delta m + \nabla \cdot w = 0$ with Neumann b.c. $(\nabla m - w) \cdot n = 0$ on $\partial \Omega$ and $\int_{\Omega} m = 1$.

<ロト < 聞 > < 臣 > < 臣 > 臣 ?1918

Treating directly the density constraint

 The ergodic problem corresponds to the optimality conditions of the following optimization problem in a bounded open set Ω ⊂ ℝ^d

$$\min_{(m,w)} \mathcal{L}_2(m,w) + \mathcal{F}(m), \qquad (P_2)$$

subject to $-\Delta m + \nabla \cdot w = 0$ with Neumann b.c. $(\nabla m - w) \cdot n = 0$ on $\partial \Omega$ and $\int_{\Omega} m = 1$. Here we define for q > 1, $\ell_q : \mathbb{R} \times \mathbb{R}^d \to \overline{\mathbb{R}}$,

$$\ell_q(a,b) := \begin{cases} \frac{1}{q} \frac{|b|^q}{a^{q-1}}, & \text{if } a > 0, \\ 0, & \text{if } (a,b) = (0,0), \\ +\infty, & \text{otherwise.} \end{cases}$$

Treating directly the density constraint

 The ergodic problem corresponds to the optimality conditions of the following optimization problem in a bounded open set Ω ⊂ ℝ^d

$$\min_{(m,w)} \mathcal{L}_2(m,w) + \mathcal{F}(m), \qquad (P_2)$$

subject to $-\Delta m + \nabla \cdot w = 0$ with Neumann b.c. $(\nabla m - w) \cdot n = 0$ on $\partial \Omega$ and $\int_{\Omega} m = 1$. Here we define for q > 1, $\ell_q : \mathbb{R} \times \mathbb{R}^d \to \overline{\mathbb{R}}$,

$$\ell_q(a,b) := \begin{cases} \frac{1}{q} \frac{|b|^q}{a^{q-1}}, & \text{if } a > 0, \\ 0, & \text{if } (a,b) = (0,0), \\ +\infty, & \text{otherwise.} \end{cases}$$

- We use the notation $\mathcal{F}(m) := \int_{\Omega} F(x, m(x)) dx$ and $\mathcal{L}_q(m, w) := \int_{\Omega} \ell_q(m, w) dx$.
- Our objective is to study $(P_q) + "m \le 1" \rightarrow \text{joint work with F. J.}$ Silva.

<ロ><日><日</th><日><日</td><日</td><1218</td>

Interior point condition and subdifferentiability

We work in the space w ∈ L^q(Ω)^d, for a q > d, hence by a Calderón-Zygmund-type argument we obtain m ∈ W^{1,q}(Ω).

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 1218

Interior point condition and subdifferentiability

- We work in the space w ∈ L^q(Ω)^d, for a q > d, hence by a Calderón-Zygmund-type argument we obtain m ∈ W^{1,q}(Ω).
- As q > d, we have W^{1,q}(Ω) → C^{0,1-d/q}(Ω), → good topology to ensure the interior point condition for the constraint m ≤ 1.

Interior point condition and subdifferentiability

- We work in the space w ∈ L^q(Ω)^d, for a q > d, hence by a Calderón-Zygmund-type argument we obtain m ∈ W^{1,q}(Ω).
- As q > d, we have W^{1,q}(Ω) → C^{0,1-d/q}(Ω), → good topology to ensure the interior point condition for the constraint m ≤ 1.

Proposition

Denote $E_0^m := \overline{\{m = 0\}} \cap \{w = 0\}$ and $E_1^m = \{m > 0\}$. Let us set $v := (w/m) \mathbb{1}_{\{m > 0\}}$. Then, if $v \notin L^q(\Omega)$, we have that $\partial \mathcal{L}_q(m, w) = \emptyset$. Otherwise we have that \mathcal{L}_q is subdifferentiable at (m, w) and

$$\partial \mathcal{L}_q(m,w) = \left\{ (\alpha,\beta) \in \overline{\mathcal{A}} : \operatorname{spt}(\alpha^s) \subseteq E_0^m, \ \alpha^{ac} \sqcup E_1^m = -\frac{1}{q'} |v|^q \text{ and } \beta \sqcup E_1^m = |v|^{q-2} v \right\},$$

where

$$\overline{\mathcal{A}} = \left\{ (\alpha, \beta) \in \mathfrak{M}(\Omega) \times L^{q'}(\Omega)^d ; \ \alpha + \frac{1}{q'} |\beta|^{q'} \leq 0 \right\},$$

and $\alpha = \alpha^{ac} + \alpha^{s}$ is the Lebesgue decomposition of the measure α .

<ロ > < 団 > < 置 > < 置 > 差 33/18

Existence and optimality conditions

Theorem

The problem (P_q) has a solution $(m, w) \in W^{1,q}(\Omega) \times L^q(\Omega)^d$.

Existence and optimality conditions

Theorem

The problem (P_q) has a solution $(m, w) \in W^{1,q}(\Omega) \times L^q(\Omega)^d$.

Theorem

Let (m, w) be a solution of problem (P_q) . Then, $v := (w/m)\mathbb{1}_{\{m>0\}} \in L^q(\Omega)^d$ and there exist $(u, p, \lambda) \in W^{1,q'}_{\diamond}(\Omega) \times \mathfrak{M}_+(\Omega) \times \mathbb{R}$ and $(\alpha, \beta) \in \overline{\mathcal{A}}$ such that $-\Delta u \in \mathfrak{M}(\Omega)$ and the following optimality conditions hold true

$$\begin{cases}
-\Delta u + \frac{1}{q'} |\nabla u|^{q'} - p - \lambda - \alpha &= f(m), \\
\beta - \nabla u &= 0, \\
-\Delta m + \nabla \cdot w &= 0, \\
spt(p) &\subseteq \{m = 1\}, \\
+ \text{Neumann b.c. on } \partial\Omega
\end{cases}$$
(3)

where the first equality holds in $\mathfrak{M}(\Omega)$.

Regularity of the solutions

Corollary

Let (m, w, u, p, λ) be as in the previous theorem. Then,

$$\begin{aligned} -\Delta u + \frac{1}{q'} |\nabla u|^{q'} - p - \lambda &= f(m), \\ \nabla u \cdot n &= 0 & \text{ on } \partial E_1^m \\ -\Delta m - \nabla \cdot (m |\nabla u|^{\frac{2-q}{q-1}} \nabla u) &= 0, \\ \nabla m \cdot n &= 0 & \text{ on } \partial E_1^m \end{aligned}$$
(4)

where the first equality is satisfied in the sense of measures while the second one in the sense of distributions over E_1^m . In particular if $f \in C^{\infty}(\overline{\Omega})$, setting $E_2^m := \{0 < m < 1\}$, we have that $(m, u) \in C^{\infty}(E_2^m) \times C^{\infty}(E_2^m)$ is a classical solution of

$$\begin{aligned} -\Delta u + \frac{1}{q'} |\nabla u|^{q'} - \lambda &= f(m), \\ \nabla u \cdot n = 0 & \text{on } \partial E_2^m \\ -\Delta m - \nabla \cdot (m |\nabla u|^{\frac{2-q}{q-1}} \nabla u) &= 0, \\ \nabla m \cdot n = 0 & \text{on } \partial E_2^m \end{aligned}$$

14/18

(5)

The dual problem

Proposition

The dual problem of (P_q) has at least one solution and can be written as

$$-\min_{(u,p,\lambda,a)\in\mathcal{K}_D}\left\{\int_{\Omega}F^*(x,a)\,\mathrm{d}x+\lambda+\sigma_{\mathcal{C}}(p)\right\}$$
(PD_q)

where

$$\mathcal{K}_{\mathcal{D}} := \left\{ (u, p, \lambda, a) \in W^{1, q'}_{\diamond}(\Omega) \times \mathfrak{M}_{+}(\Omega) \times \mathbb{R} \times \mathfrak{M}_{ac}(\Omega) : -\Delta u + \frac{1}{q'} |\nabla u|^{q'} - p - \lambda \leq a \right\},$$

 $C := \{y \in C(\overline{\Omega}) : y \leq 1\}, \sigma_{\mathcal{C}}(p) := \sup_{y \in C} \langle p, y \rangle_{\mathfrak{M}(\overline{\Omega}), C(\overline{\Omega})} \text{ and the PDE}$ in the definition of the set has to be understood in the sense of measures.

> <ロ > < 団 > < 亘 > < 亘 > < 亘 > 三 2000 15/18

The dual problem

Proposition

The dual problem of (P_q) has at least one solution and can be written as

$$-\min_{(u,p,\lambda,a)\in\mathcal{K}_D}\left\{\int_{\Omega}F^*(x,a)\,\mathrm{d}x+\lambda+\sigma_{\mathcal{C}}(p)\right\}$$
(PD_q)

where

$$\mathcal{K}_{\mathcal{D}} := \left\{ (u, p, \lambda, a) \in W^{1, q'}_{\diamond}(\Omega) \times \mathfrak{M}_{+}(\Omega) \times \mathbb{R} \times \mathfrak{M}_{ac}(\Omega) : -\Delta u + \frac{1}{q'} |\nabla u|^{q'} - p - \lambda \leq a \right\},$$

 $\mathcal{C} := \{ y \in C(\overline{\Omega}) : y \leq 1 \}, \sigma_{\mathcal{C}}(p) := \sup_{y \in \mathcal{C}} \langle p, y \rangle_{\mathfrak{M}(\overline{\Omega}), C(\overline{\Omega})} \text{ and the PDE}$ in the definition of the set has to be understood in the sense of measures.

 \rightarrow Moreover $(P_q) = (PD_q)$ from where we obtain an alternative way to derive first order optimality conditions.

An approximation argument for less regular cases

 Let us consider in the problem (P_q) a cost L_q for a q ≤ d. By this the interior point condition for the constraint m ≤ 1 will be destroyed.

<ロト</th>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

An approximation argument for less regular cases

- Let us consider in the problem (P_q) a cost L_q for a q ≤ d. By this the interior point condition for the constraint m ≤ 1 will be destroyed.
- Indeed, for instance for q = 2 and $d \ge 2$ the natural space for w is $L^2(\Omega)^d$, hence the maximal regularity for m is $H^1(\Omega)$.

<ロト</th>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

An approximation argument for less regular cases

- Let us consider in the problem (P_q) a cost L_q for a q ≤ d. By this the interior point condition for the constraint m ≤ 1 will be destroyed.
- Indeed, for instance for q = 2 and d ≥ 2 the natural space for w is L²(Ω)^d, hence the maximal regularity for m is H¹(Ω).→ no interior point for m ≤ 1.

<ロト</th>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

An approximation argument for less regular cases

- Let us consider in the problem (P_q) a cost L_q for a q ≤ d. By this the interior point condition for the constraint m ≤ 1 will be destroyed.
- Indeed, for instance for q = 2 and d ≥ 2 the natural space for w is L²(Ω)^d, hence the maximal regularity for m is H¹(Ω).→ no interior point for m ≤ 1.
- A natural procedure to solve this issue: use an approximation of type L₂ + εL_q for L₂, where q > d and take the limit as ε → 0.

An approximation argument for less regular cases

- Let us consider in the problem (P_q) a cost L_q for a q ≤ d. By this the interior point condition for the constraint m ≤ 1 will be destroyed.
- Indeed, for instance for q = 2 and d ≥ 2 the natural space for w is L²(Ω)^d, hence the maximal regularity for m is H¹(Ω).→ no interior point for m ≤ 1.
- A natural procedure to solve this issue: use an approximation of type L₂ + εL_q for L₂, where q > d and take the limit as ε → 0.
- For this we proved uniform (in ε) estimates for each term. We have

 $|\lambda_{\varepsilon}| + \|p_{\varepsilon}\|_{\mathfrak{M}} + \|m_{\varepsilon}\|_{H^{1}} + \|H_{\varepsilon}(\nabla u_{\varepsilon})\|_{L^{1}} \leq C.$

 This implies in particular that ||Δu_ε||_m ≤ C, which is enough to use again a Calderón-Zygmund-type argument and get compactness for ∇u_ε.

Summary, perspectives and open problems

Summary

• We established existence results and characterization of the solutions of stationary second order MFG systems with density constraints.

Summary, perspectives and open problems

Summary

- We established existence results and characterization of the solutions of stationary second order MFG systems with density constraints.
- For regular enough Hamiltonians we could use some results from optimal control theory for mixed PDE and state constraint.

Summary, perspectives and open problems

Summary

- We established existence results and characterization of the solutions of stationary second order MFG systems with density constraints.
- For regular enough Hamiltonians we could use some results from optimal control theory for mixed PDE and state constraint.
- For less regular Hamiltonians we propose a possible approach by approximation.

Summary, perspectives and open problems

Summary

- We established existence results and characterization of the solutions of stationary second order MFG systems with density constraints.
- For regular enough Hamiltonians we could use some results from optimal control theory for mixed PDE and state constraint.
- For less regular Hamiltonians we propose a possible approach by approximation.

Summary, perspectives and open problems

Summary

- We established existence results and characterization of the solutions of stationary second order MFG systems with density constraints.
- For regular enough Hamiltonians we could use some results from optimal control theory for mixed PDE and state constraint.
- For less regular Hamiltonians we propose a possible approach by approximation.

Work in progress, future work and open questions:

• Work in progress: similar analysis for the time dependent systems (both first and second order cases) with density constraints.

<ロト<通ト<注ト<注入
17/18

Summary, perspectives and open problems

Summary

- We established existence results and characterization of the solutions of stationary second order MFG systems with density constraints.
- For regular enough Hamiltonians we could use some results from optimal control theory for mixed PDE and state constraint.
- For less regular Hamiltonians we propose a possible approach by approximation.

Work in progress, future work and open questions:

- Work in progress: similar analysis for the time dependent systems (both first and second order cases) with density constraints.
- Future work: study the long time average of time dependent systems with density constraints.

Summary, perspectives and open problems

Summary

- We established existence results and characterization of the solutions of stationary second order MFG systems with density constraints.
- For regular enough Hamiltonians we could use some results from optimal control theory for mixed PDE and state constraint.
- For less regular Hamiltonians we propose a possible approach by approximation.

Work in progress, future work and open questions:

- Work in progress: similar analysis for the time dependent systems (both first and second order cases) with density constraints.
- Future work: study the long time average of time dependent systems with density constraints.
- Open question: find a good notion of equilibria.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 18/18
18/18

Thank you for your attention!