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Physics motivation

Microscopic model↔ emerging macroscopic structures.

Macroscopic phases→ microscopic interfaces

Approach: Microscopic modelling of the interface itself.
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Physics motivation

Example 1: Elasticity

Crystals are macroscopic objects, with ordered arrangements of
atoms or molecules in microscopic scale

Mechanical model of a crystal: little balls connected by springs,
where heat causes the jiggling

Configuration: snapshot of the atoms’ positions at a given time.
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Physics motivation

Example 1: Elasticity

In thermal equilibrium, the jigglings explore samples of a
probability measure on the configurations. This is the Gibbs
measure:

Prob(Configuration) ∝ exp(−β Energy of Configuration),

where β = 1/temperature > 0.
Moving every atom in the same direction the same amount does
not change the energy, and hence the probability, of the
configuration (shift-invariance).
If Hook’s law holds, the elastic energy between two atoms with
displacements x, y is given by c(x− y)2 (the force F needed to
extend or compress a spring by some distance |x− y| is
proportional to that distance).
Then the measure on the atoms’ configurations is
multi-dimensional Gaussian.
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Physics motivation

Recap-Gaussian Measure

1D Gaussian random variables

Recall: A standard 1D Gaussian random variable X has
distribution given by the density

P(X ∈ [x, x + dx]) =
exp(−x2/2)√

2π
dx.
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Physics motivation

Recap-Gaussian Measure

Gaussian random variables in Rn

If If 〈x, y〉 is an inner product in Rn, then

(2π)−n/2 exp
(
〈x, x〉

2

)
is the density of an associated multidimensional Gaussian.

This is the same as taking

n∑
j=1

zjej

where {ej} is an orthonormal basis and {zj} are independent 1D
Gaussians.
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Physics motivation

Example 2: Effective interface models

The interface for the Ising model - simplest description of
ferromagnetism

The spontaneous magnetization on cooling down the substance
below a critical temperature, the so-called Curie temperature.

The Ising model on a domain Ω ⊂ Zd with free boundary
condition, at inverse temperature β = 1/T > 0 and external field
h ∈ R, is given by the following Gibbs measure on spin
configurations (σx)x∈Ω ∈ {±1}Ω

PΩ,h,β(σ) :=
1

ZΩ,h,β
exp

(
β
∑
x,y∈Ω
|x−y|=1

σxσy + h
∑
x∈Ω

σx

)
P(σ),

where P is the uniform distribution on {±1}Ω.
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Physics motivation

Example 2: Effective interface models

Assume d = 2 and Ω = [0,N]× [0,N].

Spin configuration σ = {σx}x∈{0,...,N}×{0,...,N}, spins
σx ∈ {−1, 1}

Goal: Modelling and analysis of the interface phase boundary
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The model

Dimension d = 1

Interface — transition region that separates different phases

Λn := {−n,−n + 1, . . . , n− 1, n}, ∂Λn = {−n− 1, n + 1}
Height Variables (configurations) φi ∈ R, i ∈ Λn

Boundary condition 0, such that

φi = 0, when i ∈ ∂Λn.

The energy H(φ) :=
∑n+1

i=−n V(φi − φi−1), with V(s) = s2 for
Hooke’s law.
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The model

Dimension d = 1

The finite volume Gibbs measure

ν0
Λn

(φ−n, . . . , φ1, . . . , φn) =
1

Z0
Λn

exp(−βH(φ))dφΛn =

1
Z0

Λn

exp(−β
n+1∑

i=−n

(φi − φi−1)2)

n∏
i=−n

dφi,

where β = 1/T > 0, φ−n−1 = φn+1 = 0 and

Z0
Λn

:=

∫
R2n+1

exp(−β
n+1∑

i=−n

(φi − φi−1)2)

n∏
i=−n

dφi,

is a multidimensional centered Gaussian measure.

We can replace the 0-boundary condition in ν0
Λn

by a ψ-boundary
condition in νψΛn

with φ−n−1 := ψ−n−1, φn+1 := ψn+1.
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The model

Generalization to dimension d ≥ 2

Replace the discrete interval {−n,−n + 1, . . . , 1, 2, . . . , n} by a
discrete box

Λn := {−n,−n + 1, . . . , 1, . . . , n− 1, n}d,

with boundary

∂Λn := {i ∈ Zd \ Λn : ∃j ∈ Λn with |i− j| = 1}.

The energy H(φ) :=
∑

i,j∈Λn∪∂Λn
|i−j|=1

V(φi − φj), where V(s) = s2

and φi = 0 for i ∈ ∂Λn.

The corresponding finite volume Gibbs measure on RΛn is given
by

ν0
Λn

(φ) :=
1

ZΛn

exp(−βH(φ))
∏
i∈Λn

dφi.

It is a Gaussian measure, called the Gaussian Free Field (GFF).
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The model

Generalization to dimension d ≥ 2

For GFF

If x, y ∈ Λn

cov ν0
Λn

(φx, φy) = GΛn(x, y),

where GΛn(x, y) is the Green’s function, that is, the expected
number of visits to y of a simple random walk started from x
killed when it exits Λn.

GFF appears in many physical systems; two-dimensional GFF
has close connections to Schramm-Loewner Evolution (SLE).

Random, fractal curve in Ω ⊆ C simply connected.

Introduced by Oded Schramm as a candidate for the scaling limit
of loop erased random walk (and the interfaces in critical
percolation).

Contour lines of the GFF converge to SLE (Schramm-Sheffield
2009).
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The model

Generalization to dimension d ≥ 2

General potential V, general boundary condition ψ, general Λ

V : R→ R,V ∈ C2(R) with V(s) ≥ As2 + B,A > 0,B ∈ R for
large s.
The finite volume Gibbs measure on RΛ

νψΛ(φ) :=
1

ZψΛ
exp(−β

∑
i,j∈Λ∪∂Λ
|i−j|=1

V(φi − φj))
∏
i∈Λ

dφi,

where φi = ψi for i ∈ ∂Λ.
tilt u = (u1, . . . , ud) ∈ Rd and tilted boundary condition
ψu

i = i · u, i ∈ ∂Λ.

Finite volume surface tension (free energy) σΛ(u): macroscopic
energy of a surface with tilt u ∈ Rd.

σΛ(u) :=
1
|Λ|

log Zψ
u

Λ .

Gradients∇φ: ∇φb = φi − φj for b = (i, j), |i− j| = 1
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Questions

Questions (for general potentials V):

Existence and (strict) convexity of infinite volume (i.e., infinite
dimensional) surface tension

σ(u) = lim
Λ↑Zd

σΛ(u).

Existence of shift-invariant infinite dimensional Gibbs measure

ν := lim
Λ↑Zd

νψΛ

Uniqueness of shift-invariant Gibbs measure under additional
assumptions on the measure.

Quantitative results for ν: decay of covariances with respect to φ,
central limit theorem (CLT) results, log-Sobolev inequalities,
large deviations (LDP) results.
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Known results

Results: Strictly Convex Potentials

Known results for potentials V with

0 < C1 ≤ V ′′ ≤ C2 :

Existence and strict convexity of the surface tension σ for d ≥ 1
and σ ∈ C1(Rd).
Gibbs measures ν do not exist for d = 1, 2.
We can consider the distribution of the∇φ-field under the Gibbs
measure ν. We call this measure the∇φ-Gibbs measure µ.
∇φ-Gibbs measures µ exist for d ≥ 1.
(Funaki-Spohn (CMP-2007)) For every u = (u1, . . . , ud) ∈ Rd

there exists a unique shift-invariant ergodic∇φ- Gibbs
measure µ with Eµ[φek − φ0] = uk, for all k = 1, . . . , d.
CLT results, LDP results

Bolthausen, Brydges, Deuschel, Funaki, Giacomin, Ioffe, Naddaf,
Olla, Peres, Sheffield, Spencer, Spohn, Velenik, Yau, Zeitouni
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Known results

Techniques: Strictly Convex Potentials

For
0 < C1 ≤ V ′′ ≤ C2 :

Brascamp-Lieb Inequality (Brascamp-Lieb JFA
1976/Caffarelli-CMP 2000): for all x ∈ Λ and for all i ∈ Λ

var
νψΛ

(φi) ≤ var
ν̃ψΛ

(φi),

ν̃ψΛ is the Gaussian Free Field with potential Ṽ(s) = C1s2.
Random Walk Representation (Deuschel-Giacomin-Ioffe 2000):
Representation of Covariance Matrix in terms of the Green
function of a particular random walk.

GFF: If x, y ∈ Λ

cov ν0
Λ

(φx, φy) = GΛ(x, y).

General 0 < C1 ≤ V ′′ ≤ C2 :
0 ≤ cov νψΛ

(φx, φy) ≤ C
]|x−y|[d−2 , |cov µρΛ

(∇iφx,∇jφy)| ≤
C

]|x−y|[d−2+δ
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Known results

Techniques: Strictly Convex Potentials

The dynamic: SDE satisfied by (φx)x∈Zd

dφx(t) = − ∂H
∂φx

(φ(t))dt +
√

2dWx(t), x ∈ Zd,

where Wt := {Wx(t), x ∈ Zd} is a family of independent 1-dim
Brownian Motions.
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Known results

Results: Non-convex potentials

Why look at the case with non-convex potential V?

Probabilistic motivation: Universality class

Physics motivation: For lattice spring models a realistic potential
has to be non-convex to account for the phenomena of fracturing
of a crystal under stress.

The Cauchy-Born rule: When a crystal is subjected to a small
linear displacement of its boundary, the atoms will follow this
displacement.

Friesecke-Theil: for the 2-dimensional mass-spring model,
Cauchy-Born holds for a certain class of non-convex potentials.
Generalization to d-dimensional mass-spring model by Conti,
Dolzmann, Kirchheim and Müller.
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Known results

Results: Non-convex potentials

Results for non-convex potentials

For the potential

e−V(s) = pe−k1
s2
2 +(1−p)e−k2

s2
2 , β = 1, k1 << k2, p =

(
k1

k2

)1/4

V(s)

0 s

Biskup-Kotecký (PTRF-2007): Existence of several∇φ-Gibbs
measures with expected tilt Eµ[φek − φ0] = 0, but with different
variances.
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Known results

Results: Non-convex potentials

Cotar-Deuschel-Müller (CMP-2009)/ Cotar-Deuschel
(AIHP-2012):
Let

V = V0 + g, C1 ≤ V ′′0 ≤ C2, g′′ < 0.

If
C0 ≤ g′′ < 0 and

√
β||g′′||L1(R) small(C1,C2)

uniqueness for shift-invariant∇φ-Gibbs measures µ such that
Eµ [φek − φ0] = uk for k = 1, 2, . . . , d. Our results includes the
Biskup-Kotecký model, but for different range of choices of p, k1
and k2.

Adams-Kotecký-Müller (preprint): Strict convexity of the
surface tension for very small tilt u and very large β.
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Known results

Interfaces with disorder

Adding disorder (for example, making potentials random
variables) tends to destroy non-uniqueness.

Consider for simplicity the disordered model

e−Vb(ηb) := pe−k1(ηb)2+ωb+(1−p)e−k2(ηb)2−ωb , (wb)b i.i.d. Bernoulli.

Adaptation of the Aizenman-Wehr (CMP-1990) argument: gives
uniqueness of gradient Gibbs in d = 2
Conjecture

uniqueness for low enough d ≤ dc;
uniqueness/non-uniqueness phase transition for high enough
d > dc ≥ 2.

Techniques: Poincarre inequalities (Gloria/Otto), log-Sobolev
inequalities (Milman 2012).
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Open questions: non-convex potentials

Log-Sobolev inequality for moderate/low temperature.

Relaxation of the Brascamp-Lieb inequality.

Example of potential where the surface tension is
non-strictly-convex.

Conjecture: Surface tension (plus maybe some additional
assumption)⇒ uniqueness of the shift-invariant Gibbs measure.

Conjecture: Surface tension is in C2(Rd) (both for strictly
convex and for non-convex potentials).
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Open questions: non-convex potentials

THANK YOU!
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