Codina Cotar

University College London

September 09, 2014, Toronto

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Outline

1 [Physics motivation](#page-2-0)

- [Example 1: Elasticity](#page-3-0)
- [Recap-Gaussian Measure](#page-6-0)
- [Example 2: Effective interface models](#page-9-0)
- 2 [The model](#page-12-0)
	- **[Dimension](#page-12-0)** $d = 1$
	- [Generalization to dimension](#page-15-0) $d > 2$
- 3 [Questions](#page-19-0)

4 [Known results](#page-20-0)

- [Results: Strictly Convex Potentials](#page-20-0)
- [Techniques: Strictly Convex Potentials](#page-22-0)

KORKARYKERKE POLO

- [Results: Non-convex potentials](#page-25-0)
- \blacksquare [Interfaces with disorder](#page-29-0)
- 5 [Open questions: non-convex potentials](#page-31-0)
- Microscopic model \leftrightarrow emerging macroscopic structures.
- \blacksquare Macroscopic phases \rightarrow microscopic interfaces

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

Approach: Microscopic modelling of the interface itself.

L [Physics motivation](#page-3-0)

[Example 1: Elasticity](#page-3-0)

Outline

1 [Physics motivation](#page-2-0)

■ [Example 1: Elasticity](#page-3-0)

- [Recap-Gaussian Measure](#page-6-0)
- [Example 2: Effective interface models](#page-9-0)

[The model](#page-12-0)

- **[Dimension](#page-12-0)** $d = 1$
- [Generalization to dimension](#page-15-0) $d > 2$

Ouestions

[Known results](#page-20-0)

- [Results: Strictly Convex Potentials](#page-20-0)
- [Techniques: Strictly Convex Potentials](#page-22-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

- **[Results: Non-convex potentials](#page-25-0)**
- \blacksquare [Interfaces with disorder](#page-29-0)
- 5 [Open questions: non-convex potentials](#page-31-0)

L [Physics motivation](#page-4-0)

L[Example 1: Elasticity](#page-4-0)

- **Crystals are macroscopic objects, with ordered arrangements of** atoms or molecules in microscopic scale
- Mechanical model of a crystal: little balls connected by springs, where heat causes the jiggling

■ Configuration: snapshot of the atoms' positions at a given time.

KOD KAR KED KED E LOQO

L [Physics motivation](#page-5-0)

[Example 1: Elasticity](#page-5-0)

 \blacksquare In thermal equilibrium, the jigglings explore samples of a probability measure on the configurations. This is the Gibbs measure:

Prob(Configuration) \propto exp($-\beta$ Energy of Configuration),

where $\beta = 1$ /temperature > 0.

- **Moving every atom in the same direction the same amount does** not change the energy, and hence the probability, of the configuration (shift-invariance).
- \blacksquare If Hook's law holds, the elastic energy between two atoms with displacements *x*, *y* is given by $c(x - y)^2$ (the force *F* needed to extend or compress a spring by some distance $|x - y|$ is proportional to that distance).
- ■ Then the measure on the atoms' configurations is multi-dimensional Gaussian.

L [Physics motivation](#page-6-0)

L [Recap-Gaussian Measure](#page-6-0)

Outline

1 [Physics motivation](#page-2-0)

■ [Example 1: Elasticity](#page-3-0)

[Recap-Gaussian Measure](#page-6-0)

■ [Example 2: Effective interface models](#page-9-0)

[The model](#page-12-0)

- **[Dimension](#page-12-0)** $d = 1$
- [Generalization to dimension](#page-15-0) $d > 2$

Ouestions

[Known results](#page-20-0)

- [Results: Strictly Convex Potentials](#page-20-0)
- [Techniques: Strictly Convex Potentials](#page-22-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

- [Results: Non-convex potentials](#page-25-0)
- \blacksquare [Interfaces with disorder](#page-29-0)
- 5 [Open questions: non-convex potentials](#page-31-0)

L [Physics motivation](#page-7-0)

[Recap-Gaussian Measure](#page-7-0)

1D Gaussian random variables

Recall: A standard 1D Gaussian random variable *X* has distribution given by the density

$$
\mathbb{P}(X \in [x, x+dx]) = \frac{\exp(-x^2/2)}{\sqrt{2\pi}} dx.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

L [Physics motivation](#page-8-0)

[Recap-Gaussian Measure](#page-8-0)

Gaussian random variables in R *n*

If If $\langle x, y \rangle$ is an inner product in \mathbb{R}^n , then

$$
(2\pi)^{-n/2} \exp\left(\frac{\langle x, x \rangle}{2}\right)
$$

is the density of an associated multidimensional Gaussian. \blacksquare This is the same as taking

$$
\sum_{j=1}^n z_j e_j
$$

where $\{e_i\}$ is an orthonormal basis and $\{z_i\}$ are independent 1D Gaussians.

KO K K @ K K B K K B K D K O K O

L [Physics motivation](#page-9-0)

[Example 2: Effective interface models](#page-9-0)

Outline

1 [Physics motivation](#page-2-0)

- [Example 1: Elasticity](#page-3-0)
- [Recap-Gaussian Measure](#page-6-0)

■ [Example 2: Effective interface models](#page-9-0)

- [The model](#page-12-0)
	- **[Dimension](#page-12-0)** $d = 1$
	- [Generalization to dimension](#page-15-0) $d > 2$
- **Ouestions**

[Known results](#page-20-0)

- [Results: Strictly Convex Potentials](#page-20-0)
- [Techniques: Strictly Convex Potentials](#page-22-0)

KORKARYKERKE POLO

- **[Results: Non-convex potentials](#page-25-0)**
- \blacksquare [Interfaces with disorder](#page-29-0)
- 5 [Open questions: non-convex potentials](#page-31-0)

L [Physics motivation](#page-10-0)

 L [Example 2: Effective interface models](#page-10-0)

- The interface for the Ising model simplest description of ferromagnetism
- The spontaneous magnetization on cooling down the substance below a critical temperature, the so-called Curie temperature.
- The Ising model on a domain $\Omega \subset \mathbb{Z}^d$ with free boundary condition, at inverse temperature $\beta = 1/T > 0$ and external field $h \in \mathbb{R}$, is given by the following Gibbs measure on spin configurations $(\sigma_x)_{x \in \Omega} \in {\pm 1}^{\Omega}$

$$
\mathbb{P}_{\Omega,h,\beta}(\sigma) := \frac{1}{Z_{\Omega,h,\beta}} \exp \bigg(\beta \sum_{x,y \in \Omega \atop |x-y|=1} \sigma_x \sigma_y + h \sum_{x \in \Omega} \sigma_x \bigg) \mathbb{P}(\sigma),
$$

A O A G A 4 O A C A G A 4 O A 4 O A C A

where $\mathbb P$ is the uniform distribution on $\{\pm 1\}^{\Omega}$.

L [Physics motivation](#page-11-0)

[Example 2: Effective interface models](#page-11-0)

- Assume $d = 2$ and $\Omega = [0, N] \times [0, N]$.
- Spin configuration $\sigma = {\{\sigma_x\}}_{x \in \{0,\dots,N\} \times \{0,\dots,N\}}$, spins $\sigma_x \in \{-1, 1\}$

Goal: Modelling and analysis of the interface phase boundary

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

 \Box [The model](#page-12-0)

 \Box [Dimension](#page-12-0) $\overline{d} = 1$

Outline

1 [Physics motivation](#page-2-0)

- [Example 1: Elasticity](#page-3-0)
- [Recap-Gaussian Measure](#page-6-0)
- [Example 2: Effective interface models](#page-9-0)

2 [The model](#page-12-0)

[Dimension](#page-12-0) $d = 1$

[Generalization to dimension](#page-15-0) $d > 2$

Ouestions

[Known results](#page-20-0)

- [Results: Strictly Convex Potentials](#page-20-0)
- [Techniques: Strictly Convex Potentials](#page-22-0)

KOD KAR KED KED E LOQO

- [Results: Non-convex potentials](#page-25-0)
- \blacksquare [Interfaces with disorder](#page-29-0)
- 5 [Open questions: non-convex potentials](#page-31-0)

 L [The model](#page-13-0)

 \Box [Dimension](#page-13-0) $d = 1$

- $\Lambda_n := \{-n, -n+1, \ldots, n-1, n\}, \ \partial \Lambda_n = \{-n-1, n+1\}$
- **Height Variables (configurations)** $\phi_i \in \mathbb{R}, i \in \Lambda_n$
- \blacksquare Boundary condition 0, such that

$$
\phi_i = 0
$$
, when $i \in \partial \Lambda_n$.

The energy $H(\phi) := \sum_{i=-n}^{n+1} V(\phi_i - \phi_{i-1})$, with $V(s) = s^2$ for Hooke's law.

 \Box [The model](#page-14-0)

 \Box [Dimension](#page-14-0) $d = 1$

■ The finite volume Gibbs measure

$$
\nu_{\Lambda_n}^0(\phi_{-n},\ldots,\phi_1,\ldots,\phi_n)=\frac{1}{Z_{\Lambda_n}^0}\exp(-\beta H(\phi))d\phi_{\Lambda_n}=
$$

$$
\frac{1}{Z_{\Lambda_n}^0}\exp(-\beta\sum_{i=-n}^{n+1}(\phi_i-\phi_{i-1})^2)\prod_{i=-n}^n d\phi_i,
$$

where $\beta = 1/T > 0$, $\phi_{-n-1} = \phi_{n+1} = 0$ and

$$
Z_{\Lambda_n}^0 := \int_{\mathbb{R}^{2n+1}} \exp(-\beta \sum_{i=-n}^{n+1} (\phi_i - \phi_{i-1})^2) \prod_{i=-n}^n d\phi_i,
$$

is a multidimensional centered Gaussian measure.

We can replace the 0-boundary condition in $\nu_{\Lambda_n}^0$ by a ψ -boundary condition in ν_{Λ}^{ψ} $\psi_{\Lambda_n}^{\psi}$ with $\phi_{-n-1} := \psi_{-n-1}, \phi_{n+1} := \psi_{n+1}.$

L[The model](#page-15-0)

[Generalization to dimension](#page-15-0) $d > 2$

Outline

[Physics motivation](#page-2-0)

- [Example 1: Elasticity](#page-3-0)
- [Recap-Gaussian Measure](#page-6-0)
- [Example 2: Effective interface models](#page-9-0)
- 2 [The model](#page-12-0)
	- **[Dimension](#page-12-0)** $d = 1$
	- [Generalization to dimension](#page-15-0) $d > 2$
- **Ouestions**
- **[Known results](#page-20-0)**
	- [Results: Strictly Convex Potentials](#page-20-0)
	- [Techniques: Strictly Convex Potentials](#page-22-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

- **[Results: Non-convex potentials](#page-25-0)**
- \blacksquare [Interfaces with disorder](#page-29-0)
- 5 [Open questions: non-convex potentials](#page-31-0)

 \Box [The model](#page-16-0)

[Generalization to dimension](#page-16-0) $d \geq 2$

Replace the discrete interval $\{-n, -n+1, \ldots, 1, 2, \ldots, n\}$ by a discrete box

$$
\Lambda_n := \{-n, -n+1, \ldots, 1, \ldots, n-1, n\}^d,
$$

with boundary

$$
\partial \Lambda_n := \{ i \in \mathbb{Z}^d \setminus \Lambda_n : \exists j \in \Lambda_n \text{ with } |i - j| = 1 \}.
$$

- The energy $H(\phi) := \sum_{\substack{i,j \in \Lambda_n \cup \partial \Lambda_n \\ |i-j|=1}} V(\phi_i \phi_j)$, where $V(s) = s^2$ and $\phi_i = 0$ for $i \in \partial \Lambda_n$.
- The corresponding finite volume Gibbs measure on \mathbb{R}^{Λ_n} is given by

$$
\nu_{\Lambda_n}^0(\phi) := \frac{1}{Z_{\Lambda_n}} \exp(-\beta H(\phi)) \prod_{i \in \Lambda_n} d\phi_i.
$$

It is a Gaussian measure, called the Gaussian Free Field (GFF).**KORKARYKERKE POLO**

 \Box [The model](#page-17-0)

[Generalization to dimension](#page-17-0) $d > 2$

For GFF

■ If $x, y \in \Lambda_n$

$$
cov_{\nu_{\Lambda_n}^0}(\phi_x,\phi_y)=G_{\Lambda_n}(x,y),
$$

where $G_{\Lambda_n}(x, y)$ is the Green's function, that is, the expected number of visits to *y* of a simple random walk started from *x* killed when it exits Λ*n*.

- GFF appears in many physical systems; two-dimensional GFF has close connections to Schramm-Loewner Evolution (SLE).
- Random, fractal curve in $\Omega \subset \mathbb{C}$ simply connected.
- Introduced by Oded Schramm as a candidate for the scaling limit of loop erased random walk (and the interfaces in critical percolation).
- ■ Contour lines of the GFF converge to SLE (Schramm-Sheffield 2009).

 $^{\prime}$ [The model](#page-18-0)

 \Box [Generalization to dimension](#page-18-0) $d > 2$

General potential *V*, general boundary condition ψ , general Λ

- $V: \mathbb{R} \to \mathbb{R}, V \in C^2(\mathbb{R})$ with $V(s) \ge As^2 + B, A > 0, B \in \mathbb{R}$ for large *s*.
- The finite volume Gibbs measure on \mathbb{R}^{Λ}

$$
\nu_{\Lambda}^{\psi}(\phi) := \frac{1}{Z_{\Lambda}^{\psi}} \exp(-\beta \sum_{\substack{i,j \in \Lambda \cup \partial \Lambda \\ |i-j|=1}} V(\phi_i - \phi_j)) \prod_{i \in \Lambda} d\phi_i,
$$

where $\phi_i = \psi_i$ for $i \in \partial \Lambda$.

tilt $u = (u_1, \dots, u_d) \in \mathbb{R}^d$ and tilted boundary condition $\psi_i^u = i \cdot u, i \in \partial \Lambda.$

Finite volume surface tension (free energy) $\sigma_{\Lambda}(u)$: macroscopic energy of a surface with tilt $u \in \mathbb{R}^d$.

$$
\sigma_{\Lambda}(u) := \frac{1}{|\Lambda|} \log Z_{\Lambda}^{\psi^u}.
$$

Grad[i](#page-19-0)ents $\nabla \phi$: $\nabla \phi_b = \phi_i - \phi_j$ $\nabla \phi_b = \phi_i - \phi_j$ for $b = (i, j), |i - j| = 1$ $b = (i, j), |i - j| = 1$ $b = (i, j), |i - j| = 1$ $b = (i, j), |i - j| = 1$ $b = (i, j), |i - j| = 1$ $b = (i, j), |i - j| = 1$

\Box Ouestions

Questions (for general potentials *V*):

■ Existence and (strict) convexity of infinite volume (i.e., infinite dimensional) surface tension

$$
\sigma(u) = \lim_{\Lambda \uparrow \mathbb{Z}^d} \sigma_\Lambda(u).
$$

Existence of shift-invariant infinite dimensional Gibbs measure

$$
\nu := \lim_{\Lambda \uparrow \mathbb{Z}^d} \nu_\Lambda^\psi
$$

- Uniqueness of shift-invariant Gibbs measure under additional assumptions on the measure.
- Quantitative results for ν : decay of covariances with respect to ϕ , central limit theorem (CLT) results, log-Sobolev inequalities, large deviations (LDP) results.

 $L_{\text{Known results}}$ $L_{\text{Known results}}$ $L_{\text{Known results}}$

L [Results: Strictly Convex Potentials](#page-20-0)

Outline

[Physics motivation](#page-2-0)

- [Example 1: Elasticity](#page-3-0)
- [Recap-Gaussian Measure](#page-6-0)
- [Example 2: Effective interface models](#page-9-0)
- [The model](#page-12-0)
	- **[Dimension](#page-12-0)** $d = 1$
	- [Generalization to dimension](#page-15-0) $d > 2$
- **Ouestions**

4 [Known results](#page-20-0)

[Results: Strictly Convex Potentials](#page-20-0)

■ [Techniques: Strictly Convex Potentials](#page-22-0)

KORKARYKERKE POLO

- **[Results: Non-convex potentials](#page-25-0)**
- \blacksquare [Interfaces with disorder](#page-29-0)
- 5 [Open questions: non-convex potentials](#page-31-0)

 $L_{\text{Known results}}$ $L_{\text{Known results}}$ $L_{\text{Known results}}$

L [Results: Strictly Convex Potentials](#page-21-0)

Known results for potentials *V* with

 $0 < C_1 \leq V'' \leq C_2$:

- Existence and strict convexity of the surface tension σ for $d > 1$ and $\sigma \in C^1(\mathbb{R}^d)$.
- Gibbs measures ν do not exist for $d = 1, 2$.
- We can consider the distribution of the $\nabla \phi$ -field under the Gibbs measure ν . We call this measure the $\nabla \phi$ -Gibbs measure μ .
- $\nabla \phi$ -Gibbs measures μ exist for $d \geq 1$.
- (Funaki-Spohn (CMP-2007)) For every $u = (u_1, \dots, u_d) \in \mathbb{R}^d$ there exists a **unique shift-invariant ergodic** $\nabla \phi$ - Gibbs measure μ with $E_{\mu}[\phi_{e_k} - \phi_0] = u_k$, for all $k = 1, \ldots, d$.
- CLT results, LDP results

Bolthausen, Brydges, Deuschel, Funaki, Giacomin, Ioffe, Naddaf, Olla, Peres, Sheffield, Spencer, Spohn, Velenik[, Y](#page-20-0)[au](#page-22-0)[,](#page-20-0) [Ze](#page-21-0)[i](#page-22-0)[to](#page-19-0)[u](#page-20-0)[ni](#page-22-0)

 000

 $L_{\text{Known results}}$ $L_{\text{Known results}}$ $L_{\text{Known results}}$

[Techniques: Strictly Convex Potentials](#page-22-0)

Outline

[Physics motivation](#page-2-0)

- [Example 1: Elasticity](#page-3-0)
- [Recap-Gaussian Measure](#page-6-0)
- [Example 2: Effective interface models](#page-9-0)
- [The model](#page-12-0)
	- **[Dimension](#page-12-0)** $d = 1$
	- [Generalization to dimension](#page-15-0) $d > 2$
- **Ouestions**

4 [Known results](#page-20-0)

- [Results: Strictly Convex Potentials](#page-20-0)
- [Techniques: Strictly Convex Potentials](#page-22-0)

KORKARYKERKE POLO

- **[Results: Non-convex potentials](#page-25-0)**
- \blacksquare [Interfaces with disorder](#page-29-0)
- 5 [Open questions: non-convex potentials](#page-31-0)

 $L_{\text{Known results}}$ $L_{\text{Known results}}$ $L_{\text{Known results}}$

L [Techniques: Strictly Convex Potentials](#page-23-0)

For

$$
0
$$

■ Brascamp-Lieb Inequality (Brascamp-Lieb JFA 1976/Caffarelli-CMP 2000): for all $x \in \Lambda$ and for all $i \in \Lambda$

$$
\operatorname{var}_{\nu_{\Lambda}^{\psi}}(\phi_{i}) \leq \operatorname{var}_{\tilde{\nu}_{\Lambda}^{\psi}}(\phi_{i}),
$$

 $\tilde{\nu}_\Lambda^\psi$ $\frac{\psi}{\Lambda}$ is the Gaussian Free Field with potential $\tilde{V}(s) = C_1 s^2$. ■ Random Walk Representation (Deuschel-Giacomin-Ioffe 2000): Representation of Covariance Matrix in terms of the Green function of a particular random walk.

GFF: If $x, y \in \Lambda$

$$
cov_{\nu_{\Lambda}^0}(\phi_x,\phi_y)=G_{\Lambda}(x,y).
$$

General $0 < C_1 \leq V'' \leq C_2$: $0 \leq \text{cov}_{\nu_{\Lambda}^{\psi}}(\phi_x, \phi_y) \leq \frac{C}{\left|\left|x-y\right|\right|^{d-2}}, \left|\text{cov}_{\mu_{\Lambda}^{\rho}}(\nabla_i \phi_x, \nabla_j \phi_y)\right| \leq$ *C*]|*x*−*y*|[*d*−2+δ.
E 1990 - E 1994 I 1994 I 1995 I 1996 L_{Known results

[Techniques: Strictly Convex Potentials](#page-24-0)

■ The dynamic: SDE satisfied by $(\phi_x)_{x \in \mathbb{Z}^d}$

$$
d\phi_x(t)=-\frac{\partial H}{\partial \phi_x}(\phi(t))dt+\sqrt{2}dW_x(t), \ \ x\in\mathbb{Z}^d,
$$

where $W_t := \{W_x(t), x \in \mathbb{Z}^d\}$ is a family of independent 1-dim Brownian Motions.

KID KINK VEX KEX NE YORCH

 $L_{\text{Known results}}$ $L_{\text{Known results}}$ $L_{\text{Known results}}$

L [Results: Non-convex potentials](#page-25-0)

Outline

[Physics motivation](#page-2-0)

- [Example 1: Elasticity](#page-3-0)
- [Recap-Gaussian Measure](#page-6-0)
- [Example 2: Effective interface models](#page-9-0)
- [The model](#page-12-0)
	- **[Dimension](#page-12-0)** $d = 1$
	- [Generalization to dimension](#page-15-0) $d > 2$
- **Ouestions**

4 [Known results](#page-20-0)

- [Results: Strictly Convex Potentials](#page-20-0)
- [Techniques: Strictly Convex Potentials](#page-22-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

[Results: Non-convex potentials](#page-25-0)

- \blacksquare [Interfaces with disorder](#page-29-0)
- 5 [Open questions: non-convex potentials](#page-31-0)

 $L_{\text{Known results}}$ $L_{\text{Known results}}$ $L_{\text{Known results}}$

L [Results: Non-convex potentials](#page-26-0)

Why look at the case with non-convex potential *V*?

- **Probabilistic motivation: Universality class**
- **Physics motivation:** For lattice spring models a realistic potential has to be non-convex to account for the phenomena of fracturing of a crystal under stress.
- The Cauchy-Born rule: When a crystal is subjected to a small linear displacement of its boundary, the atoms will follow this displacement.
- **Friesecke-Theil:** for the 2-dimensional mass-spring model, Cauchy-Born holds for a certain class of non-convex potentials. Generalization to *d*-dimensional mass-spring model by Conti, Dolzmann, Kirchheim and Müller.

 $L_{\rm K}$ nown results

L [Results: Non-convex potentials](#page-27-0)

Results for non-convex potentials

 \blacksquare For the potential

$$
e^{-V(s)} = pe^{-k_1\frac{s^2}{2}} + (1-p)e^{-k_2\frac{s^2}{2}}, \ \beta = 1, k_1 < < k_2, \ p = \left(\frac{k_1}{k_2}\right)^{1/4}
$$

Biskup-Kotecký (PTRF-2007): Existence of several $\nabla \phi$ -Gibbs $\overline{}$ measures with expected tilt $E_{\mu}[\phi_{e_k} - \phi_0] = 0$, but with different variances.K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 $L_{\text{Known results}}$ $L_{\text{Known results}}$ $L_{\text{Known results}}$

[Results: Non-convex potentials](#page-28-0)

■ Cotar-Deuschel-Müller (CMP-2009)/ Cotar-Deuschel (AIHP-2012): Let

$$
V = V_0 + g, C_1 \le V_0'' \le C_2, g'' < 0.
$$

If

$$
C_0 \le g'' < 0 \text{ and } \sqrt{\beta}||g''||_{L^1(\mathbb{R})} \text{ small}(C_1, C_2)
$$

uniqueness for shift-invariant $\nabla \phi$ -Gibbs measures μ such that E_{μ} $[\phi_{e_k} - \phi_0] = u_k$ for $k = 1, 2, \dots, d$. Our results includes the Biskup-Kotecký model, but for different range of choices of *p*, *k*¹ and k_2 .

■ Adams-Kotecký-Müller (preprint): Strict convexity of the surface tension for very small tilt u and very large β .

 $L_{\text{Known results}}$ $L_{\text{Known results}}$ $L_{\text{Known results}}$

L[Interfaces with disorder](#page-29-0)

Outline

[Physics motivation](#page-2-0)

- [Example 1: Elasticity](#page-3-0)
- [Recap-Gaussian Measure](#page-6-0)
- [Example 2: Effective interface models](#page-9-0)
- [The model](#page-12-0)
	- **[Dimension](#page-12-0)** $d = 1$
	- [Generalization to dimension](#page-15-0) $d > 2$
- **Ouestions**

4 [Known results](#page-20-0)

- [Results: Strictly Convex Potentials](#page-20-0)
- [Techniques: Strictly Convex Potentials](#page-22-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

[Results: Non-convex potentials](#page-25-0)

\blacksquare [Interfaces with disorder](#page-29-0)

5 [Open questions: non-convex potentials](#page-31-0)

[Interfaces with disorder](#page-30-0)

- Adding disorder (for example, making potentials random variables) tends to destroy non-uniqueness.
- Consider for simplicity the disordered model

$$
e^{-V_b(\eta_b)} := pe^{-k_1(\eta_b)^2 + \omega_b} + (1-p)e^{-k_2(\eta_b)^2 - \omega_b}
$$
, $(w_b)_b$ i.i.d. Bernoulli.

Adaptation of the Aizenman-Wehr (CMP-1990) argument: gives uniqueness of gradient Gibbs in $d = 2$

- Conjecture
	- uniqueness for low enough $d \leq d_c$;
	- uniqueness/non-uniqueness phase transition for high enough $d > d_c > 2$.
- ■ Techniques: Poincarre inequalities (Gloria/Otto), log-Sobolev inequalities (Milman 2012).

[Open questions: non-convex potentials](#page-31-0)

- Log-Sobolev inequality for moderate/low temperature.
- Relaxation of the Brascamp-Lieb inequality.
- \blacksquare Example of potential where the surface tension is non-strictly-convex.
- Conjecture: Surface tension (plus maybe some additional assumption) \Rightarrow uniqueness of the shift-invariant Gibbs measure.

A O A G A 4 O A C A G A 4 O A 4 O A C A

Conjecture: Surface tension is in $C^2(\mathbb{R}^d)$ (both for strictly convex and for non-convex potentials).

[Open questions: non-convex potentials](#page-32-0)

THANK YOU!

K ロ K (日) K 경 K (동) K 경 (동) X (영)