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The Prescribed Jacobian Inequality Applications to Nonlinear Elasticity Sketch of the Proofs

The Prescribed Jacobian Equation

Let Ω⊂ Rn be a smooth bounded domain, f : Ω→ R, n ≥ 2.
Can we find a map φ : Ω→ Rn satisfying{

det∇φ = f in Ω
φ = id on ∂ Ω?

(1)

Obvious necessary condition:∫
Ω

f = |Ω|.
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The Prescribed Jacobian Equation: Exsitence Theory

Existence results when f is regular enough (Hölder continuous):

• f ∈ Cr ,α (Ω), f > 0, r ≥ 0, 0 < α < 1

⇒ Existence of φ ∈ Cr+1,α (Ω;Ω) satisfying (1): Dacorogna-Moser
’90, also Rivière-Ye ’96 and Carlier-Dacorogna ’13.

• f ∈W m,p(Ω), inf f > 0, with m ≥ 1 and p > max{1,n/m}
⇒ Existence of φ ∈W m+1,p(Ω;Ω) satisfying (1): Ye ’94.

• f ∈ Cr ,α (Ω), no sign hypothesis on f , r ≥ 1, 0≤ α ≤ 1

⇒ Existence of φ ∈ Cr ,α (Ω;Rn) satisfying (1): Cupini-Dacorogna-K
’09.
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The Prescribed Jacobian Equation: Exsitence Theory

When f is not regular enough (continuous or less):

• Non existence result (Burago-Kleiner ’98, McMullen ’98): for all
ε > 0 there exists f ∈ C0(Ω) with ‖f −1‖L∞ ≤ ε for which there
exists no Lipschitz solution to (1).

• Rivière-Ye ’96: f ∈ C0(Ω), f > 0,⇒ ∃ φ ∈ ∩α<1C0,α (Ω;Ω)

f ∈ L∞(Ω), inf f > 0,⇒ ∃ φ ∈ ∩α<β C0,α (Ω;Ω) for some β ≤ 1
depending on ‖f −1‖L∞

• Monge-Ampère theory: f ∈ C0 ⇒, f > 0 ∃ u ∈ ∩p<∞W 2,p
loc with

det∇2u = f (Caffarelli)
f ∈ L∞, inf f > 0⇒ ∃ u ∈W 2,1+ε

loc with det∇2u = f
(De-Phillipis-Figalli).

• Open problem: does there exist a W 1,p solution of (1) for some p
when f is only C0 (and positive)?
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The Prescribed Jacobian Inequality

{
det∇φ ≥ f (a.e.) in Ω

φ = id on ∂ Ω.
(2)

• Natural necessary condition:∫
Ω

f < |Ω|.

• Note that if
∫

Ω f = |Ω| then (2) reduced to (1).
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The Prescribed Jacobian Inequality: Existence of Solutions

Theorem (J. Fischer and K. ’14: the L∞ case)
Assume

• Ω⊂ R2 connected bounded and smooth

• f ∈ L∞(Ω), f ≥ 0,
∫

Ω f < |Ω|.

Then there exists φ : Ω→ Ω bi-Lipschitz satisfying (2). Moreover the
regularity is sharp in general.

• The case f ∈ C0 is trivial: by convolution find f̃ ∈ C∞(Ω) with f̃ ≥ f
and

∫
Ω f̃ = |Ω| then apply one of the previous mentioned results.

• When f ∈ L∞ not longer easy: take f = 2χA where A⊂ Ω is open
and dense with |A| small enough. Then there is no f̃ continuous
with f̃ ≥ f and

∫
Ω f̃ = |Ω| (if it were the case then f̃ ≥ 2 in Ω).
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The Prescribed Jacobian Inequality: Existence of Solutions

Theorem (J. Fischer and K. ’14: the Lp case)
Let Ω⊂ R2 connected bounded and smooth open set. Then there
exists a constant D > 2 with the following property:

• for every p > 2D

• for every f ∈ Lp(Ω) with f ≥ 0 and
∫

Ω f < |Ω|
there exists a bi-Sobolev map φ with φ ,φ−1 ∈W 1,p/D(Ω;Ω) satisfying
(2).
Moreover the constant D is computable.
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Functionals in Nonlinear Elasticity

Consider model functionals of the form

F [u] :=
∫

Ω
|∇u|2 +

1

(det∇u−µ)
β

+

dx

where Ω⊂ R2 smooth and bounded, β > 0 and µ ≥ 0.

• Classical functionals: µ = 0 (blow up when det∇u = 0)

• However µ > 0 reasonable: in practice compression beyond a
certain limit (almost) impossible

• Necessary conditions for minimizers with a Dirichlet condition?
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Necessary Conditions for Minimizers: µ = 0

F [u] =
∫

Ω
|∇u|2 +

1

(det∇u)
β

+

dx

• Equilibrium equation∫
Ω

(2∇ξ (u) ∇u) : ∇u−β · 1

(det∇u)
β

+

divξ (u) dx = 0

for all ξ ∈ C∞
cpt(Ω) (Ball ’76/77)

• Derivation by ansatz

lim inf
ε→0

F [(id+εξ )◦u]−F [u]

ε
≥ 0
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Necessary Conditions for Minimizers: µ > 0

F [u] =
∫

Ω
|∇u|2 +

1

(det∇u−µ)
β

+

dx

Theorem (J. Fischer and K. ’14)
The Equilibrium equation holds: i.e. for all ξ ∈ C∞

cpt(Ω).∫
Ω

(2∇ξ (u) ∇u) : ∇u−β · det∇u

(det∇u−µ)
β+1
+

divξ (u) dx = 0

• First difficulty: need to show det∇u · (det∇u−µ)
−β−1
+ ∈ L1(Ω)

• Second difficulty:

F [(id+εξ )◦u] =
∫

Ω
. . .+

1(
det(Id+ε∇ξ (u))det∇u−µ

)β

+

dx

⇒ regularization required on {det∇u & µ}
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Main tool: Bi-Lipschitz Maps Stretching a Measurable Planar
Set

Proposition (J. Fischer and K. ’14)
For every τ > 0 and for every measurable set M ⊂ Ω⊂ R2 (with small
enough measure with respect to τ) there exists a bi-Lipschitz map
φ = φτ,M : Ω→ Ω preserving the boundary pointwise with

det∇φ ≥ 1 + τ a.e. in M,

det∇φ ≥ 1−C
√
|M|τ a.e. in Ω\M,

||∇φ − Id ||Lp(Ω) ≤ C|M|1/(2p)
τ for 1≤ p ≤ ∞,

where C is a constant depending only on Ω.
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Making use of those stretching maps

• For finding a bi-Lipschitz map φ satisfying (for f ∈ L∞, f ≥ 0 and∫
Ω f < |Ω|) {

det∇φ ≥ f in Ω
φ = id on ∂ Ω

• first find f̃ ∈ C∞(Ω) with
∫

Ω f̃ = |Ω| and |{̃f < f}|<< 1
• find ϕ ∈ C∞(Ω;Ω) satisfying{

det∇ϕ = f̃ in Ω
ϕ = id on ∂ Ω

• postcompose ϕ by a map streching (by a sufficiently big factor τ)
the set ϕ({̃f < f}).
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Making use of those stretching maps

• For finding a W 1,p/D map φ satisfying (for f ∈ Lp, f ≥ 0 and∫
Ω f < |Ω|) {

det∇φ ≥ f in Ω
φ = id on ∂ Ω:

• basic idea: stretch the superlevel sets of f
• more precisely: by induction construct the map φi stretching the

set φi−1 ◦ · · · ◦φ1({f ≥ 2i}) by a factor of 2
• compose those maps and obtain φ = limi→∞ φi ◦ · · · ◦φ1.
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Construction of the Stretching Maps

• Simplification: with no loss of generality we can assume
• Ω = (0,1)2

• the set M is compact
• φ presearves the boundary globally (and not pointwise)

• make use of Alberti-Csörnyei-Preiss covering: any compact set
M ⊂ (0,1)2 can be covered with by horizontal and vertical
1-Lipschitz strips with:

• Total area of strips ≤ C
√
|M|

• number of intersections of horizontal (and respectively vertical)
strips controlled uniformly

• Stretch the strips by a factor τ (explicit formula).
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Thank you for your attention
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