KORK ERKERKER ADAM

Bi-Lipschitz Solutions to the Prescribed Jacobian Inequality in the Plane and Applications to Nonlinear Elasticity

Olivier Kneuss joint work with Julian Fischer (MPI Leibzig)

Fields Institute **Toronto**

30.9.2014

The Prescribed Jacobian Equation

Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain, $f:\overline{\Omega}\to\mathbb{R},\,n\geq 2.$ Can we find a map $\phi:\overline{\Omega}\to \mathbb{R}^n$ satisfying

$$
\begin{cases} \det \nabla \phi = f & \text{in } \Omega \\ \phi = \text{id} & \text{on } \partial \Omega \end{cases}
$$
 (1)

Obvious necessary condition:

$$
\int_{\Omega} f = |\Omega|.
$$

The Prescribed Jacobian Equation

Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain, $f:\overline{\Omega}\to\mathbb{R},\,n\geq 2.$ Can we find a map $\phi:\overline{\Omega}\to \mathbb{R}^n$ satisfying

$$
\begin{cases} \det \nabla \phi = f & \text{in } \Omega \\ \phi = \text{id} & \text{on } \partial \Omega? \end{cases}
$$
 (1)

Obvious necessary condition:

$$
\int_{\Omega} f = |\Omega|.
$$

The Prescribed Jacobian Equation

Let $\Omega \subset \mathbb{R}^n$ be a smooth bounded domain, $f:\overline{\Omega}\to\mathbb{R},\,n\geq 2.$ Can we find a map $\phi:\overline{\Omega}\to \mathbb{R}^n$ satisfying

$$
\begin{cases}\n\det \nabla \phi = f & \text{in } \Omega \\
\phi = id & \text{on } \partial \Omega?\n\end{cases}
$$
\n(1)

Obvious necessary condition:

$$
\int_{\Omega} f = |\Omega|.
$$

The Prescribed Jacobian Equation: Exsitence Theory

- $f \in C^{r,\alpha}(\overline{\Omega})$, $f > 0$, $r \geq 0$, $0 < \alpha < 1$
- \Rightarrow Existence of $\phi \in C^{r+1, \alpha}(\overline{\Omega};\overline{\Omega})$ satisfying [\(1\)](#page-1-1): Dacorogna-Moser '90, also Rivière-Ye '96 and Carlier-Dacorogna '13.
	- $f \in W^{m,p}(\Omega)$, inf $f > 0$, with $m \ge 1$ and $p > max\{1, n/m\}$
- \Rightarrow Existence of $\phi \in W^{m+1,p}(\Omega;\Omega)$ satisfying [\(1\)](#page-1-1): Ye '94.
	- $\bullet\;\; f\in C^{r,\alpha}(\overline{\Omega}),$ no sign hypothesis on $f,\,r\geq 1,\,0\leq\alpha\leq 1$
- \Rightarrow Existence of $\phi \in C^{r,\alpha}(\overline{\Omega};\mathbb{R}^n)$ satisfying [\(1\)](#page-1-1): Cupini-Dacorogna-K '09.

The Prescribed Jacobian Equation: Exsitence Theory

- $f \in C^{r,\alpha}(\overline{\Omega})$, $f > 0$, $r \geq 0$, $0 < \alpha < 1$
- \Rightarrow Existence of $\phi \in C^{r+1, \alpha}(\overline{\Omega};\overline{\Omega})$ satisfying [\(1\)](#page-1-1): Dacorogna-Moser '90, also Rivière-Ye '96 and Carlier-Dacorogna '13.
	- $f \in W^{m,p}(\Omega)$, inf $f > 0$, with $m \ge 1$ and $p > max\{1, n/m\}$
- \Rightarrow Existence of $\phi \in W^{m+1,p}(\Omega;\Omega)$ satisfying [\(1\)](#page-1-1): Ye '94.
	- $\bullet\;\; f\in C^{r,\alpha}(\overline{\Omega}),$ no sign hypothesis on $f,\,r\geq 1,\,0\leq\alpha\leq 1$
- \Rightarrow Existence of $\phi \in C^{r,\alpha}(\overline{\Omega};\mathbb{R}^n)$ satisfying [\(1\)](#page-1-1): Cupini-Dacorogna-K '09.

The Prescribed Jacobian Equation: Exsitence Theory

- $f \in C^{r,\alpha}(\overline{\Omega})$, $f > 0$, $r \geq 0$, $0 < \alpha < 1$
- \Rightarrow Existence of $\phi \in C^{r+1,\alpha}(\overline{\Omega};\overline{\Omega})$ satisfying [\(1\)](#page-1-1): Dacorogna-Moser '90, also Rivière-Ye '96 and Carlier-Dacorogna '13.
- $f \in W^{m,p}(\Omega)$, inf $f > 0$, with $m \ge 1$ and $p > max\{1, n/m\}$
- \Rightarrow Existence of $\phi \in W^{m+1,p}(\Omega;\Omega)$ satisfying [\(1\)](#page-1-1): Ye '94.
	- $\bullet\;\; f\in C^{r,\alpha}(\overline{\Omega}),$ no sign hypothesis on $f,\,r\geq 1,\,0\leq\alpha\leq 1$
- \Rightarrow Existence of $\phi \in C^{r,\alpha}(\overline{\Omega};\mathbb{R}^n)$ satisfying [\(1\)](#page-1-1): Cupini-Dacorogna-K '09.

The Prescribed Jacobian Equation: Exsitence Theory

- $f \in C^{r,\alpha}(\overline{\Omega})$, $f > 0$, $r \geq 0$, $0 < \alpha < 1$
- \Rightarrow Existence of $\phi \in C^{r+1,\alpha}(\overline{\Omega};\overline{\Omega})$ satisfying [\(1\)](#page-1-1): Dacorogna-Moser '90, also Rivière-Ye '96 and Carlier-Dacorogna '13.
	- *f* \in *W^{m,p}*(Ω), inf*f* > 0, with *m* \geq 1 and *p* > max{1,*n/m*}
- \Rightarrow Existence of $\phi \in W^{m+1,p}(\Omega;\Omega)$ satisfying [\(1\)](#page-1-1): Ye '94.
	- $\bullet\;\; f\in C^{r,\alpha}(\overline{\Omega}),$ no sign hypothesis on $f,\,r\geq 1,\,0\leq\alpha\leq 1$
- \Rightarrow Existence of $\phi \in C^{r,\alpha}(\overline{\Omega};\mathbb{R}^n)$ satisfying [\(1\)](#page-1-1): Cupini-Dacorogna-K '09.

The Prescribed Jacobian Equation: Exsitence Theory

- $f \in C^{r,\alpha}(\overline{\Omega})$, $f > 0$, $r \geq 0$, $0 < \alpha < 1$
- \Rightarrow Existence of $\phi \in C^{r+1,\alpha}(\overline{\Omega};\overline{\Omega})$ satisfying [\(1\)](#page-1-1): Dacorogna-Moser '90, also Rivière-Ye '96 and Carlier-Dacorogna '13.
	- *f* \in *W^{m,p}*(Ω), inf*f* > 0, with *m* \geq 1 and *p* > max{1,*n/m*}
- \Rightarrow Existence of $\phi \in W^{m+1,p}(\Omega; \Omega)$ satisfying [\(1\)](#page-1-1): Ye '94.
- $\bullet\;\; f\in C^{r,\alpha}(\overline{\Omega}),$ no sign hypothesis on $f,\,r\geq 1,\,0\leq\alpha\leq 1$
- \Rightarrow Existence of $\phi \in C^{r,\alpha}(\overline{\Omega};\mathbb{R}^n)$ satisfying [\(1\)](#page-1-1): Cupini-Dacorogna-K '09.

The Prescribed Jacobian Equation: Exsitence Theory

- $f \in C^{r,\alpha}(\overline{\Omega})$, $f > 0$, $r \geq 0$, $0 < \alpha < 1$
- \Rightarrow Existence of $\phi \in C^{r+1,\alpha}(\overline{\Omega};\overline{\Omega})$ satisfying [\(1\)](#page-1-1): Dacorogna-Moser '90, also Rivière-Ye '96 and Carlier-Dacorogna '13.
	- *f* \in *W^{m,p}*(Ω), inf*f* > 0, with *m* \geq 1 and *p* > max{1,*n/m*}
- \Rightarrow Existence of $\phi \in W^{m+1,p}(\Omega; \Omega)$ satisfying [\(1\)](#page-1-1): Ye '94.
	- $\bullet\;\; f\in C^{r,\alpha}(\overline{\Omega}),$ no sign hypothesis on $f,\,r\geq 1,\,0\leq\alpha\leq 1$
- \Rightarrow Existence of $\phi \in C^{r,\alpha}(\overline{\Omega};{\mathbb R}^{n})$ satisfying [\(1\)](#page-1-1): Cupini-Dacorogna-K '09.

The Prescribed Jacobian Equation: Exsitence Theory

- Non existence result (Burago-Kleiner '98, McMullen '98): for all $\varepsilon >0$ there exists $f \in C^0(\overline{\Omega})$ with $\|f-1\|_{L^\infty} \leq \varepsilon$ for which there exists no Lipschitz solution to [\(1\)](#page-1-1).
- Rivière-Ye '96: *f* ∈ $C^0(\overline{\Omega}), f > 0, \Rightarrow \exists \phi \in \cap_{\alpha < 1} C^{0,\alpha}(\overline{\Omega}; \overline{\Omega})$ $f\in L^\infty(\Omega),$ inf $f>0,$ \Rightarrow $\exists \phi\in \cap_{\alpha<\beta}C^{0,\alpha}(\overline{\Omega};\overline{\Omega})$ for some $\beta\leq 1$ depending on $\|f-1\|_{L^{\infty}}$
- Monge-Ampère theory: $f \in C^0 \Rightarrow$, $f > 0 \exists u \in \bigcap_{p < \infty} W_{loc}^{2,p}$ with det∇ ²*u* = *f* (Caffarelli) $f \in L^{\infty}$, inf $f > 0 \Rightarrow \exists u \in W_{loc}^{2,1+\varepsilon}$ with $\det \nabla^2 u = t$ (De-Phillipis-Figalli).
- Open problem: does there exist a *W*1,*^p* solution of [\(1\)](#page-1-1) for some *p* when f is only C^0 (and positive)?

The Prescribed Jacobian Equation: Exsitence Theory

- Non existence result (Burago-Kleiner '98, McMullen '98): for all $\varepsilon >0$ there exists $f \in C^0(\overline{\Omega})$ with $\|f-1\|_{L^\infty} \leq \varepsilon$ for which there exists no Lipschitz solution to [\(1\)](#page-1-1).
- Rivière-Ye '96: *f* ∈ $C^0(\overline{\Omega}), f > 0, \Rightarrow \exists \phi \in \cap_{\alpha < 1} C^{0,\alpha}(\overline{\Omega}; \overline{\Omega})$ $f\in L^\infty(\Omega),$ inf $f>0,$ \Rightarrow $\exists \phi\in \cap_{\alpha<\beta}C^{0,\alpha}(\overline{\Omega};\overline{\Omega})$ for some $\beta\leq 1$ depending on $\|f-1\|_{L^{\infty}}$
- Monge-Ampère theory: $f \in C^0 \Rightarrow$, $f > 0 \exists u \in \bigcap_{p < \infty} W_{loc}^{2,p}$ with det∇ ²*u* = *f* (Caffarelli) $f \in L^{\infty}$, inf $f > 0 \Rightarrow \exists u \in W_{loc}^{2,1+\varepsilon}$ with $\det \nabla^2 u = t$ (De-Phillipis-Figalli).
- Open problem: does there exist a *W*1,*^p* solution of [\(1\)](#page-1-1) for some *p* when f is only C^0 (and positive)?

The Prescribed Jacobian Equation: Exsitence Theory

When *f* is not regular enough (continuous or less):

- Non existence result (Burago-Kleiner '98, McMullen '98): for all $\varepsilon >0$ there exists $f \in C^0(\overline{\Omega})$ with $\|f-1\|_{L^\infty} \leq \varepsilon$ for which there exists no Lipschitz solution to [\(1\)](#page-1-1).
- \bullet Rivière-Ye '96: *f* ∈ *C*⁰($\overline{\Omega}$), *f* > 0, \Rightarrow ∃ $\phi \in \cap_{\alpha < 1} C^{0,\alpha}(\overline{\Omega}; \overline{\Omega})$

 $f\in L^\infty(\Omega),$ inf $f>0,$ \Rightarrow $\exists \phi\in \cap_{\alpha<\beta}C^{0,\alpha}(\overline{\Omega};\overline{\Omega})$ for some $\beta\leq 1$ depending on $\|f-1\|_{L^{\infty}}$

- Monge-Ampère theory: $f \in C^0 \Rightarrow$, $f > 0 \exists u \in \bigcap_{p < \infty} W_{loc}^{2,p}$ with det∇ ²*u* = *f* (Caffarelli) $f \in L^{\infty}$, inf $f > 0 \Rightarrow \exists u \in W_{loc}^{2,1+\varepsilon}$ with $\det \nabla^2 u = t$ (De-Phillipis-Figalli).
- Open problem: does there exist a *W*1,*^p* solution of [\(1\)](#page-1-1) for some *p* when f is only C^0 (and positive)?

The Prescribed Jacobian Equation: Exsitence Theory

- Non existence result (Burago-Kleiner '98, McMullen '98): for all $\varepsilon >0$ there exists $f \in C^0(\overline{\Omega})$ with $\|f-1\|_{L^\infty} \leq \varepsilon$ for which there exists no Lipschitz solution to [\(1\)](#page-1-1).
- \bullet Rivière-Ye '96: *f* ∈ *C*⁰($\overline{\Omega}$), *f* > 0, \Rightarrow ∃ $\phi \in \cap_{\alpha < 1} C^{0,\alpha}(\overline{\Omega}; \overline{\Omega})$ $f\in L^\infty(\Omega),$ inf $f>0,$ \Rightarrow $\exists~\phi\in \cap_{\alpha<\beta}$ $C^{0,\alpha}(\overline{\Omega};\overline{\Omega})$ for some $\beta\leq 1$ depending on $\|f - 1\|_{L^{\infty}}$
- Monge-Ampère theory: $f \in C^0 \Rightarrow$, $f > 0 \exists u \in \bigcap_{p < \infty} W_{loc}^{2,p}$ with det∇ ²*u* = *f* (Caffarelli) $f \in L^{\infty}$, inf $f > 0 \Rightarrow \exists u \in W_{loc}^{2,1+\varepsilon}$ with $\det \nabla^2 u = t$ (De-Phillipis-Figalli).
- Open problem: does there exist a *W*1,*^p* solution of [\(1\)](#page-1-1) for some *p* when f is only C^0 (and positive)?

The Prescribed Jacobian Equation: Exsitence Theory

- Non existence result (Burago-Kleiner '98, McMullen '98): for all $\varepsilon >0$ there exists $f \in C^0(\overline{\Omega})$ with $\|f-1\|_{L^\infty} \leq \varepsilon$ for which there exists no Lipschitz solution to [\(1\)](#page-1-1).
- \bullet Rivière-Ye '96: *f* ∈ *C*⁰($\overline{\Omega}$), *f* > 0, \Rightarrow ∃ $\phi \in \cap_{\alpha < 1} C^{0,\alpha}(\overline{\Omega}; \overline{\Omega})$ $f\in L^\infty(\Omega),$ inf $f>0,$ \Rightarrow $\exists~\phi\in \cap_{\alpha<\beta}$ $C^{0,\alpha}(\overline{\Omega};\overline{\Omega})$ for some $\beta\leq 1$ depending on $\|f - 1\|_{L^{\infty}}$
- Monge-Ampère theory: $f \in C^0 \Rightarrow$, $f > 0 \exists u \in \bigcap_{p < \infty} W^{2,p}_{loc}$ with det∇ ²*u* = *f* (Caffarelli) $f \in L^{\infty}$, inf $f > 0 \Rightarrow \exists u \in W_{loc}^{2,1+\varepsilon}$ with $\det \nabla^2 u = t$ (De-Phillipis-Figalli).
- Open problem: does there exist a *W*1,*^p* solution of [\(1\)](#page-1-1) for some *p* when f is only C^0 (and positive)?

The Prescribed Jacobian Equation: Exsitence Theory

- Non existence result (Burago-Kleiner '98, McMullen '98): for all $\varepsilon >0$ there exists $f \in C^0(\overline{\Omega})$ with $\|f-1\|_{L^\infty} \leq \varepsilon$ for which there exists no Lipschitz solution to [\(1\)](#page-1-1).
- \bullet Rivière-Ye '96: *f* ∈ *C*⁰($\overline{\Omega}$), *f* > 0, \Rightarrow ∃ $\phi \in \cap_{\alpha < 1} C^{0,\alpha}(\overline{\Omega}; \overline{\Omega})$ $f\in L^\infty(\Omega),$ inf $f>0,$ \Rightarrow $\exists~\phi\in \cap_{\alpha<\beta}$ $C^{0,\alpha}(\overline{\Omega};\overline{\Omega})$ for some $\beta\leq 1$ depending on $\|f - 1\|_{L^{\infty}}$
- Monge-Ampère theory: $f \in C^0 \Rightarrow$, $f > 0 \exists u \in \bigcap_{p < \infty} W^{2,p}_{loc}$ with det∇ ²*u* = *f* (Caffarelli) $f \in L^{\infty}$, inf $f > 0 \Rightarrow \exists \,\, u \in W^{2,1+\varepsilon}_{loc}$ with $\det \nabla^2 u = t$ (De-Phillipis-Figalli).
- Open problem: does there exist a *W*1,*^p* solution of [\(1\)](#page-1-1) for some *p* when f is only C^0 (and positive)?

The Prescribed Jacobian Equation: Exsitence Theory

- Non existence result (Burago-Kleiner '98, McMullen '98): for all $\varepsilon >0$ there exists $f \in C^0(\overline{\Omega})$ with $\|f-1\|_{L^\infty} \leq \varepsilon$ for which there exists no Lipschitz solution to [\(1\)](#page-1-1).
- \bullet Rivière-Ye '96: *f* ∈ *C*⁰($\overline{\Omega}$), *f* > 0, \Rightarrow ∃ $\phi \in \cap_{\alpha < 1} C^{0,\alpha}(\overline{\Omega}; \overline{\Omega})$ $f\in L^\infty(\Omega),$ inf $f>0,$ \Rightarrow $\exists~\phi\in \cap_{\alpha<\beta}$ $C^{0,\alpha}(\overline{\Omega};\overline{\Omega})$ for some $\beta\leq 1$ depending on $\|f - 1\|_{L^{\infty}}$
- Monge-Ampère theory: $f \in C^0 \Rightarrow$, $f > 0 \exists u \in \bigcap_{p < \infty} W^{2,p}_{loc}$ with det∇ ²*u* = *f* (Caffarelli) $f \in L^{\infty}$, inf $f > 0 \Rightarrow \exists \,\, u \in W^{2,1+\varepsilon}_{loc}$ with $\det \nabla^2 u = t$ (De-Phillipis-Figalli).
- Open problem: does there exist a $W^{1,p}$ solution of [\(1\)](#page-1-1) for some p when f is only C^0 (and positive)?

(2)

K ロ X K @ X K 할 X X 할 X : 할 X Y Q Q @

The Prescribed Jacobian Inequality

$$
\left\{\begin{array}{cl} \text{det}\nabla\phi\geq f & \text{(a.e.) in }\Omega\\ \phi=\text{id} & \text{on }\partial\Omega. \end{array}\right.
$$

• Natural necessary condition:

$$
\int_{\Omega}f<|\Omega|.
$$

• Note that if $\int_{\Omega} f = |\Omega|$ then [\(2\)](#page-17-0) reduced to [\(1\)](#page-1-1).

(2)

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

The Prescribed Jacobian Inequality

$$
\begin{cases} \det \nabla \phi \ge f & \text{(a.e.) in } \Omega \\ \phi = \text{id} & \text{on } \partial \Omega. \end{cases}
$$

• Natural necessary condition:

$$
\int_{\Omega}f<|\Omega|.
$$

• Note that if $\int_{\Omega} f = |\Omega|$ then [\(2\)](#page-17-0) reduced to [\(1\)](#page-1-1).

(2)

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

The Prescribed Jacobian Inequality

$$
\begin{cases} det \nabla \phi \ge f & (a.e.) \text{ in } \Omega \\ \phi = id & \text{ on } \partial \Omega. \end{cases}
$$

• Natural necessary condition:

$$
\int_{\Omega}f<|\Omega|.
$$

• Note that if $\int_{\Omega} f = |\Omega|$ then [\(2\)](#page-17-0) reduced to [\(1\)](#page-1-1).

Theorem (J. Fischer and K. '14: the *L* [∞] case)

Assume

- Ω ⊂ R 2 *connected bounded and smooth*
- \bullet *f* ∈ *L*[∞](Ω), *f* ≥ 0, $\int_{\Omega} f < |\Omega|$.

- The case $f \in C^0$ is trivial: by convolution find $f \in C^\infty(\overline{\Omega})$ with $f \geq f$ and $\int_{\Omega} f = |\Omega|$ then apply one of the previous mentioned results.
- When *f* ∈ *L* [∞] not longer easy: take *f* = 2χ*^A* where *A* ⊂ Ω is open and dense with $|A|$ small enough. Then there is no f continuous with $f \ge f$ and $\int_{\Omega} f = |\Omega|$ (if it were the case then $f \ge 2$ in Ω).

Theorem (J. Fischer and K. '14: the *L* [∞] case)

Assume

- Ω ⊂ R 2 *connected bounded and smooth*
- *f* ∈ *L*[∞](Ω), *f* ≥ 0, \int_{Ω} *f* < |Ω|.

- The case $f \in C^0$ is trivial: by convolution find $f \in C^\infty(\overline{\Omega})$ with $f \geq f$ and $\int_{\Omega} f = |\Omega|$ then apply one of the previous mentioned results.
- When *f* ∈ *L* [∞] not longer easy: take *f* = 2χ*^A* where *A* ⊂ Ω is open and dense with $|A|$ small enough. Then there is no f continuous with $f \ge f$ and $\int_{\Omega} f = |\Omega|$ (if it were the case then $f \ge 2$ in Ω).

Theorem (J. Fischer and K. '14: the *L* [∞] case)

Assume

- Ω ⊂ R 2 *connected bounded and smooth*
- *f* ∈ *L*[∞](Ω), *f* ≥ 0, \int_{Ω} *f* < |Ω|.

- The case $f \in C^0$ is trivial: by convolution find $f \in C^\infty(\overline{\Omega})$ with $f \geq f$ and $\int_{\Omega} f = |\Omega|$ then apply one of the previous mentioned results.
- When *f* ∈ *L* [∞] not longer easy: take *f* = 2χ*^A* where *A* ⊂ Ω is open and dense with $|A|$ small enough. Then there is no f continuous with $f \ge f$ and $\int_{\Omega} f = |\Omega|$ (if it were the case then $f \ge 2$ in Ω).

Theorem (J. Fischer and K. '14: the *L* [∞] case)

Assume

- Ω ⊂ R 2 *connected bounded and smooth*
- *f* ∈ *L*[∞](Ω), *f* ≥ 0, \int_{Ω} *f* < |Ω|.

- The case $f \in C^0$ is trivial: by convolution find $f \in C^\infty(\overline{\Omega})$ with $f \geq f$ and $\int_{\Omega} f = |\Omega|$ then apply one of the previous mentioned results.
- When *f* ∈ *L* [∞] not longer easy: take *f* = 2χ*^A* where *A* ⊂ Ω is open and dense with $|A|$ small enough. Then there is no f continuous with $f \ge f$ and $\int_{\Omega} f = |\Omega|$ (if it were the case then $f \ge 2$ in Ω).

The Prescribed Jacobian Inequality: Existence of Solutions

Theorem (J. Fischer and K. '14: the *L* [∞] case)

Assume

- Ω ⊂ R 2 *connected bounded and smooth*
- *f* ∈ *L*[∞](Ω), *f* ≥ 0, \int_{Ω} *f* < |Ω|.

- The case $f \in C^0$ is trivial: by convolution find $f \in C^\infty(\overline{\Omega})$ with $f \geq f$ and $\int_{\Omega} f = |\Omega|$ then apply one of the previous mentioned results.
- When *f* ∈ *L* [∞] not longer easy: take *f* = 2χ*^A* where *A* ⊂ Ω is open and dense with $|A|$ small enough. Then there is no f continuous with $f \ge f$ and $\int_{\Omega} f = |\Omega|$ (if it were the case then $f \ge 2$ in Ω).

Theorem (J. Fischer and K. '14: the *L* [∞] case)

Assume

- Ω ⊂ R 2 *connected bounded and smooth*
- *f* ∈ *L*[∞](Ω), *f* ≥ 0, \int_{Ω} *f* < |Ω|.

- The case $f \in C^0$ is trivial: by convolution find $f \in C^\infty(\overline{\Omega})$ with $f \geq f$ and $\int_{\Omega} f = |\Omega|$ then apply one of the previous mentioned results.
- When *f* ∈ *L* [∞] not longer easy: take *f* = 2χ*^A* where *A* ⊂ Ω is open and dense with $|A|$ small enough. Then there is no \tilde{f} continuous with $f \ge f$ and $\int_{\Omega} f = |\Omega|$ (if it were the case then $f \ge 2$ in Ω).

The Prescribed Jacobian Inequality: Existence of Solutions

Theorem (J. Fischer and K. '14: the L^p case)

Let Ω ⊂ R 2 *connected bounded and smooth open set. Then there exists a constant D* > 2 *with the following property:*

- *for every* $p > 2D$
- *for every f* $\in L^p(\Omega)$ *with f* ≥ 0 *and* $\int_{\Omega} f < |\Omega|$

there exists a bi-Sobolev map φ *with* φ,φ [−]¹ ∈ *W*1,*p*/*^D* (Ω;Ω) *satisfying*

The Prescribed Jacobian Inequality: Existence of Solutions

Theorem (J. Fischer and K. '14: the L^p case)

Let Ω ⊂ R 2 *connected bounded and smooth open set. Then there exists a constant D* > 2 *with the following property:*

- *for every* $p > 2D$
- *for every f* $\in L^p(\Omega)$ *with f* ≥ 0 *and* $\int_{\Omega} f < |\Omega|$

there exists a bi-Sobolev map φ *with* φ,φ [−]¹ ∈ *W*1,*p*/*^D* (Ω;Ω) *satisfying*

The Prescribed Jacobian Inequality: Existence of Solutions

Theorem (J. Fischer and K. '14: the L^p case)

Let Ω ⊂ R 2 *connected bounded and smooth open set. Then there exists a constant D* > 2 *with the following property:*

- *for every* $p > 2D$
- *for every f* $\in L^p(\Omega)$ *with f* ≥ 0 *and* $\int_{\Omega} f < |\Omega|$

there exists a bi-Sobolev map φ *with* φ,φ [−]¹ ∈ *W*1,*p*/*^D* (Ω;Ω) *satisfying [\(2\)](#page-17-0).*

The Prescribed Jacobian Inequality: Existence of Solutions

Theorem (J. Fischer and K. '14: the L^p case)

Let Ω ⊂ R 2 *connected bounded and smooth open set. Then there exists a constant D* > 2 *with the following property:*

• *for every* $p > 2D$

• *for every f* $\in L^p(\Omega)$ *with f* ≥ 0 *and* $\int_{\Omega} f < |\Omega|$

there exists a bi-Sobolev map φ *with* φ,φ [−]¹ ∈ *W*1,*p*/*^D* (Ω;Ω) *satisfying [\(2\)](#page-17-0).*

Functionals in Nonlinear Elasticity

Consider model functionals of the form

$$
\mathscr{F}[u] := \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u - \mu)_+^{\beta}} dx
$$

- Classical functionals: $\mu = 0$ (blow up when det $\nabla u = 0$)
- However $\mu > 0$ reasonable: in practice compression beyond a certain limit (almost) impossible
- • Necessary conditions for minimizers with a Dirichlet condition?

Functionals in Nonlinear Elasticity

Consider model functionals of the form

$$
\mathscr{F}[u] := \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u - \mu)_+^{\beta}} dx
$$

- Classical functionals: $\mu = 0$ (blow up when det $\nabla u = 0$)
- However $\mu > 0$ reasonable: in practice compression beyond a certain limit (almost) impossible
- Necessary conditions for minimizers with a Dirichlet condition?

Functionals in Nonlinear Elasticity

Consider model functionals of the form

$$
\mathscr{F}[u] := \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u - \mu)_+^{\beta}} dx
$$

- Classical functionals: $\mu = 0$ (blow up when det $\nabla u = 0$)
- However $\mu > 0$ reasonable: in practice compression beyond a certain limit (almost) impossible
- Necessary conditions for minimizers with a Dirichlet condition?

Functionals in Nonlinear Elasticity

Consider model functionals of the form

$$
\mathscr{F}[u] := \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u - \mu)_+^{\beta}} dx
$$

- Classical functionals: $\mu = 0$ (blow up when det $\nabla u = 0$)
- However $\mu > 0$ reasonable: in practice compression beyond a certain limit (almost) impossible
- Necessary conditions for minimizers with a Dirichlet condition?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | K 9 Q @

Necessary Conditions for Minimizers: $\mu = 0$

$$
\mathscr{F}[u] = \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u)_+^{\beta}} dx
$$

• Equilibrium equation

$$
\int_{\Omega} (2\nabla \xi(u) \nabla u) : \nabla u - \beta \cdot \frac{1}{(\det \nabla u)_+^{\beta}} \operatorname{div} \xi(u) \ dx = 0
$$

for all $\xi\in\mathit{C}_{cpt}^{\scriptscriptstyle \infty}(\Omega)$ (Ball '76/77)

• Derivation by ansatz

$$
\liminf_{\varepsilon\to 0}\frac{\mathscr{F}[(\mathsf{id}+\varepsilon\xi)\circ u]-\mathscr{F}[u]}{\varepsilon}\geq 0
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | K 9 Q @

Necessary Conditions for Minimizers: $\mu = 0$

$$
\mathscr{F}[u] = \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u)_+^{\beta}} dx
$$

• Equilibrium equation

$$
\int_{\Omega} (2\nabla \xi(u) \nabla u) : \nabla u - \beta \cdot \frac{1}{(\det \nabla u)_+^{\beta}} \operatorname{div} \xi(u) \ dx = 0
$$

for all $\xi\in\mathit{C}_{cpt}^{\scriptscriptstyle \infty}(\Omega)$ (Ball '76/77)

• Derivation by ansatz

$$
\liminf_{\varepsilon\to 0}\frac{\mathscr{F}[(\mathsf{id}+\varepsilon\xi)\circ u]-\mathscr{F}[u]}{\varepsilon}\geq 0
$$

$$
\mathscr{F}[u] = \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u - \mu)_+^{\beta}} dx
$$

Theorem (J. Fischer and K. '14) *The Equilibrium equation holds: i.e. for all* $\xi \in C^{\infty}_{\text{cpt}}(\Omega)$.

$$
\int_{\Omega} \left(2\nabla \xi(u)\nabla u\right) : \nabla u - \beta \cdot \frac{\det \nabla u}{\left(\det \nabla u - \mu\right)_+^{\beta+1}} \operatorname{div} \xi(u) \ dx = 0
$$

 \bullet First difficulty: need to show det ∇*u* · (det ∇*u* − μ) $^{−β-1}_+$ ∈ *L*¹(Ω) • Second difficulty:

$$
\mathscr{F}[(id+\varepsilon\xi)\circ u]=\int_{\Omega}\ldots+\frac{1}{\left(det(\text{Id}+\varepsilon\nabla\xi(u)\right)\det\nabla u-\mu)_{+}^{\beta}}dx
$$

 \Rightarrow regularization required on {det $∇u$ $\geq \mu$ } **A O A G A 4 O A C A G A 4 O A 4 O A C A**

$$
\mathscr{F}[u] = \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u - \mu)_+^{\beta}} dx
$$

Theorem (J. Fischer and K. '14) *The Equilibrium equation holds: i.e. for all* $\xi \in C^{\infty}_{\text{cpt}}(\Omega)$ *.*

$$
\int_{\Omega} (2\nabla \xi(u) \nabla u) : \nabla u - \beta \cdot \frac{\det \nabla u}{(\det \nabla u - \mu)_+^{\beta+1}} \operatorname{div} \xi(u) \ dx = 0
$$

 \bullet First difficulty: need to show det ∇*u* · (det ∇*u* − μ) $^{−β-1}_+$ ∈ *L*¹(Ω) • Second difficulty:

$$
\mathscr{F}[(id+\varepsilon\xi)\circ u]=\int_{\Omega}\ldots+\frac{1}{\left(det(\text{Id}+\varepsilon\nabla\xi(u)\right)\det\nabla u-\mu)_{+}^{\beta}}dx
$$

 \Rightarrow regularization required on {det $∇u$ $\geq \mu$ } **K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 수 있다.**

$$
\mathscr{F}[u] = \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u - \mu)_+^{\beta}} dx
$$

Theorem (J. Fischer and K. '14) *The Equilibrium equation holds: i.e. for all* $\xi \in C^{\infty}_{\text{cpt}}(\Omega)$ *.*

$$
\int_{\Omega} (2\nabla \xi(u) \nabla u) : \nabla u - \beta \cdot \frac{\det \nabla u}{(\det \nabla u - \mu)_+^{\beta+1}} \operatorname{div} \xi(u) \ dx = 0
$$

 \bullet First difficulty: need to show det ∇*u* · (det ∇*u* $-\mu$) $^{−\beta-1}_{+} \in L^{1}(\Omega)$ • Second difficulty:

$$
\mathscr{F}[(id+\varepsilon\xi)\circ u]=\int_{\Omega}\ldots+\frac{1}{\left(det\left(Id+\varepsilon\nabla\xi(u)\right) det\nabla u-\mu\right)^{\beta}_{+}}dx
$$

⇒ regularization required on {det∇*^u* & µ}**KORKARKERKER E VOQO**

$$
\mathscr{F}[u] = \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u - \mu)_+^{\beta}} dx
$$

Theorem (J. Fischer and K. '14) *The Equilibrium equation holds: i.e. for all* $\xi \in C^{\infty}_{\text{cpt}}(\Omega)$ *.*

$$
\int_{\Omega} (2\nabla \xi(u) \nabla u) : \nabla u - \beta \cdot \frac{\det \nabla u}{(\det \nabla u - \mu)_+^{\beta+1}} \operatorname{div} \xi(u) \ dx = 0
$$

- \bullet First difficulty: need to show det ∇*u* · (det ∇*u* $-\mu$) $^{−\beta-1}_{+} \in L^{1}(\Omega)$
- Second difficulty:

$$
\mathscr{F}[(\mathsf{id}+\varepsilon\xi)\circ u]=\int_{\Omega}\ldots+\frac{1}{\left(\det(\mathsf{Id}+\varepsilon\nabla\xi(u)\right)\det\nabla u-\mu\right)^{\beta}_{+}}dx
$$

⇒ regularization required on {det∇*^u* & µ}

$$
\mathscr{F}[u] = \int_{\Omega} |\nabla u|^2 + \frac{1}{(\det \nabla u - \mu)_+^{\beta}} dx
$$

Theorem (J. Fischer and K. '14) *The Equilibrium equation holds: i.e. for all* $\xi \in C^{\infty}_{\text{cpt}}(\Omega)$ *.*

$$
\int_{\Omega} (2\nabla \xi(u) \nabla u) : \nabla u - \beta \cdot \frac{\det \nabla u}{(\det \nabla u - \mu)_+^{\beta+1}} \operatorname{div} \xi(u) \ dx = 0
$$

- \bullet First difficulty: need to show det ∇*u* · (det ∇*u* $-\mu$) $^{−\beta-1}_{+} \in L^{1}(\Omega)$
- Second difficulty:

$$
\mathscr{F}[(\mathsf{id}+\varepsilon\xi)\circ u]=\int_{\Omega}\ldots+\frac{1}{(\det(\mathsf{Id}+\varepsilon\nabla\xi(u))\det\nabla u-\mu)_+^{\beta}}\;dx
$$

 \Rightarrow regularization required on {det $∇u ≥ μ$ } **K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 수 있다.**

Main tool: Bi-Lipschitz Maps Stretching a Measurable Planar Set

Proposition (J. Fischer and K. '14)

For every $\tau > 0$ and for every measurable set $M \subset \Omega \subset \mathbb{R}^2$ (with small *enough measure with respect to* τ*) there exists a bi-Lipschitz map* $\phi = \phi_{\tau,M} : \Omega \to \Omega$ *preserving the boundary pointwise with*

$$
\det \nabla \phi \ge 1 + \tau \qquad \qquad a.e. \text{ in } M,
$$

$$
\det \nabla \phi \ge 1 - C \sqrt{|M|} \tau \qquad \qquad a.e. \text{ in } \Omega \setminus M,
$$

$$
||\nabla \phi - \text{Id}||_{L^p(\Omega)} \le C |M|^{1/(2p)} \tau \qquad \qquad \text{for } 1 \le p \le \infty,
$$

where C is a constant depending only on Ω.

Main tool: Bi-Lipschitz Maps Stretching a Measurable Planar Set

Proposition (J. Fischer and K. '14)

For every $\tau > 0$ and for every measurable set $M \subset \Omega \subset \mathbb{R}^2$ (with small *enough measure with respect to* τ*) there exists a bi-Lipschitz map* $\phi = \phi_{\tau,M} : \overline{\Omega} \to \overline{\Omega}$ preserving the boundary pointwise with

$$
\begin{aligned} \det \nabla \phi &\geq 1+\tau \qquad &\text{a.e. in } M,\\ \det \nabla \phi &\geq 1-C\sqrt{|M|}\tau \qquad &\text{a.e. in } \Omega \setminus M,\\ ||\nabla \phi - \operatorname{Id}||_{L^p(\Omega)} &\leq C |M|^{1/(2p)} \tau \qquad &\text{for } 1\leq p\leq \infty, \end{aligned}
$$

where C is a constant depending only on Ω.

Making use of those stretching maps

• For finding a bi-Lipschitz map φ satisfying (for *f* ∈ *L* [∞], *f* ≥ 0 and $\int_{\Omega} f < |\Omega|$)

$$
\begin{cases} \det \nabla \phi \ge f & \text{in } \Omega \\ \phi = \text{id} & \text{on } \partial \Omega \end{cases}
$$

- first find $f \in C^\infty(\overline{\Omega})$ with $\int_{\Omega} f = |\Omega|$ and $|\{f < f\}| << 1$
- $\bullet \;\;$ find $\pmb{\varphi} \in \pmb{C}^\infty(\overline{\Omega};\overline{\Omega})$ satisfying

$$
\begin{cases} \det \nabla \varphi = \widetilde{f} & \text{in } \Omega \\ \varphi = id & \text{on } \partial \Omega \end{cases}
$$

postcompose φ by a map streching (by a sufficiently big factor τ) the set $\varphi({f < f})$.

Making use of those stretching maps

• For finding a bi-Lipschitz map φ satisfying (for *f* ∈ *L* [∞], *f* ≥ 0 and $\int_{\Omega} f < |\Omega|$)

$$
\begin{cases} \det \nabla \phi \ge f & \text{in } \Omega \\ \phi = \text{id} & \text{on } \partial \Omega \end{cases}
$$

• first find $f \in C^{\infty}(\overline{\Omega})$ with $\int_{\Omega} f = |\Omega|$ and $|\{f < f\}| << 1$

 $\bullet \;\;$ find $\pmb{\varphi} \in \pmb{C}^\infty(\overline{\Omega};\overline{\Omega})$ satisfying

$$
\begin{cases} \det \nabla \varphi = \widetilde{f} & \text{in } \Omega \\ \varphi = id & \text{on } \partial \Omega \end{cases}
$$

postcompose φ by a map streching (by a sufficiently big factor τ) the set $\varphi({f < f})$.

Making use of those stretching maps

• For finding a bi-Lipschitz map φ satisfying (for *f* ∈ *L* [∞], *f* ≥ 0 and $\int_{\Omega} f < |\Omega|$)

$$
\begin{cases} \det \nabla \phi \ge f & \text{in } \Omega \\ \phi = \text{id} & \text{on } \partial \Omega \end{cases}
$$

• first find
$$
\widetilde{f} \in C^{\infty}(\overline{\Omega})
$$
 with $\int_{\Omega} \widetilde{f} = |\Omega|$ and $|\{\widetilde{f} < f\}| < 1$

 $\bullet \;\;$ find $\varphi \in C^\infty(\overline{\Omega};\overline{\Omega})$ satisfying

$$
\begin{cases} \det \nabla \varphi = \widetilde{f} & \text{in } \Omega \\ \varphi = id & \text{on } \partial \Omega \end{cases}
$$

• postcompose φ by a map streching (by a sufficiently big factor τ) the set $\varphi({f < f})$.

Making use of those stretching maps

• For finding a bi-Lipschitz map φ satisfying (for *f* ∈ *L* [∞], *f* ≥ 0 and $\int_{\Omega} f < |\Omega|$)

$$
\begin{cases} \det \nabla \phi \ge f & \text{in } \Omega \\ \phi = \text{id} & \text{on } \partial \Omega \end{cases}
$$

• first find
$$
\widetilde{f} \in C^{\infty}(\overline{\Omega})
$$
 with $\int_{\Omega} \widetilde{f} = |\Omega|$ and $|\{\widetilde{f} < f\}| < 1$

 $\bullet \;\;$ find $\varphi \in C^\infty(\overline{\Omega};\overline{\Omega})$ satisfying

$$
\begin{cases} \det \nabla \varphi = \widetilde{f} & \text{in } \Omega \\ \varphi = id & \text{on } \partial \Omega \end{cases}
$$

postcompose φ by a map streching (by a sufficiently big factor τ) the set $\varphi(\{\widetilde{f} < f\})$.

- For finding a $W^{1,p/D}$ map ϕ satisfying (for $f \in L^p$, $f \geq 0$ and $\int_{\Omega} f < |\Omega|$) \int det $\nabla \phi \geq f$ in Ω $\phi = \mathsf{id}$ on $\partial \Omega$:
	- basic idea: stretch the superlevel sets of *f*
	- more precisely: by induction construct the map ϕ_i stretching the set $\phi_{i-1}\circ\cdots\circ\phi_{1}(\{f\geq 2^{i}\})$ by a factor of 2
	- compose those maps and obtain $\phi = \lim_{i \to \infty} \phi_i \circ \cdots \circ \phi_1$.

- For finding a $W^{1,p/D}$ map ϕ satisfying (for $f \in L^p$, $f \geq 0$ and $\int_{\Omega} f < |\Omega|$) \int det $\nabla \phi \geq f$ in Ω $\phi = \mathsf{id}$ on $\partial \Omega$:
	- basic idea: stretch the superlevel sets of *f*
	- more precisely: by induction construct the map ϕ_i stretching the set $\phi_{i-1}\circ\cdots\circ\phi_{1}(\{f\geq 2^{i}\})$ by a factor of 2
	- compose those maps and obtain $\phi = \lim_{i \to \infty} \phi_i \circ \cdots \circ \phi_1$.

- For finding a $W^{1,p/D}$ map ϕ satisfying (for $f \in L^p$, $f \geq 0$ and $\int_{\Omega} f < |\Omega|$) \int det $\nabla \phi \geq f$ in Ω $\phi = \mathsf{id}$ on $\partial \Omega$:
	- basic idea: stretch the superlevel sets of *f*
	- more precisely: by induction construct the map ϕ_i stretching the set $\phi_{i-1}\circ\cdots\circ\phi_{1}(\{f\geq 2^{i}\})$ by a factor of 2
	- compose those maps and obtain $\phi = \lim_{i \to \infty} \phi_i \circ \cdots \circ \phi_1$.

- For finding a $W^{1,p/D}$ map ϕ satisfying (for $f \in L^p$, $f \geq 0$ and $\int_{\Omega} f < |\Omega|$) \int det $\nabla \phi \geq f$ in Ω $\phi = \mathsf{id}$ on $\partial \Omega$:
	- basic idea: stretch the superlevel sets of *f*
	- more precisely: by induction construct the map ϕ_i stretching the set $\phi_{i-1}\circ\cdots\circ\phi_{1}(\{f\geq 2^{i}\})$ by a factor of 2
	- compose those maps and obtain $\phi = \lim_{i \to \infty} \phi_i \circ \cdots \circ \phi_1$.

Construction of the Stretching Maps

• Simplification: with no loss of generality we can assume

- $\Omega = (0,1)^2$
- the set *M* is compact
- \bullet ϕ presearves the boundary globally (and not pointwise)
- make use of Alberti-Csörnyei-Preiss covering: any compact set $M \subset (0,1)^2$ can be covered with by horizontal and vertical 1-Lipschitz strips with:
	- Total area of strips $\leq C\sqrt{|M|}$
	- number of intersections of horizontal (and respectively vertical) strips controlled uniformly
- Stretch the strips by a factor τ (explicit formula).

Construction of the Stretching Maps

• Simplification: with no loss of generality we can assume

- $\Omega = (0, 1)^2$
- the set *M* is compact
- \bullet ϕ presearves the boundary globally (and not pointwise)
- make use of Alberti-Csörnyei-Preiss covering: any compact set $M \subset (0,1)^2$ can be covered with by horizontal and vertical 1-Lipschitz strips with:
	- Total area of strips $\leq C\sqrt{|M|}$
	- number of intersections of horizontal (and respectively vertical) strips controlled uniformly
- Stretch the strips by a factor τ (explicit formula).

Construction of the Stretching Maps

• Simplification: with no loss of generality we can assume

- $\Omega = (0, 1)^2$
- the set *M* is compact
- \bullet ϕ presearves the boundary globally (and not pointwise)
- make use of Alberti-Csörnyei-Preiss covering: any compact set $M \subset (0,1)^2$ can be covered with by horizontal and vertical 1-Lipschitz strips with:
	- Total area of strips $\leq C\sqrt{|M|}$
	- number of intersections of horizontal (and respectively vertical) strips controlled uniformly
- Stretch the strips by a factor τ (explicit formula).

- Simplification: with no loss of generality we can assume
	- $\Omega = (0, 1)^2$
	- the set *M* is compact
	- \bullet ϕ presearves the boundary globally (and not pointwise)
- make use of Alberti-Csörnyei-Preiss covering: any compact set $M \subset (0,1)^2$ can be covered with by horizontal and vertical 1-Lipschitz strips with:
	- Total area of strips $\leq C\sqrt{|M|}$
	- number of intersections of horizontal (and respectively vertical) strips controlled uniformly
- Stretch the strips by a factor τ (explicit formula).

- Simplification: with no loss of generality we can assume
	- $\Omega = (0, 1)^2$
	- the set *M* is compact
	- \bullet ϕ presearves the boundary globally (and not pointwise)
- make use of Alberti-Csörnyei-Preiss covering: any compact set $M \subset (0,1)^2$ can be covered with by horizontal and vertical 1-Lipschitz strips with:
	- Total area of strips $\leq C\sqrt{|M|}$
	- number of intersections of horizontal (and respectively vertical) strips controlled uniformly
- Stretch the strips by a factor τ (explicit formula).

- Simplification: with no loss of generality we can assume
	- $\Omega = (0, 1)^2$
	- the set *M* is compact
	- \bullet ϕ presearves the boundary globally (and not pointwise)
- make use of Alberti-Csörnyei-Preiss covering: any compact set $M \subset (0,1)^2$ can be covered with by horizontal and vertical 1-Lipschitz strips with:
	- Total area of strips $\leq C\sqrt{|M|}$
	- number of intersections of horizontal (and respectively vertical) strips controlled uniformly
- Stretch the strips by a factor τ (explicit formula).

- Simplification: with no loss of generality we can assume
	- $\Omega = (0, 1)^2$
	- the set *M* is compact
	- \bullet ϕ presearves the boundary globally (and not pointwise)
- make use of Alberti-Csörnyei-Preiss covering: any compact set $M \subset (0,1)^2$ can be covered with by horizontal and vertical 1-Lipschitz strips with:
	- Total area of strips $\leq C\sqrt{|M|}$
	- number of intersections of horizontal (and respectively vertical) strips controlled uniformly
- Stretch the strips by a factor τ (explicit formula).

- Simplification: with no loss of generality we can assume
	- $\Omega = (0, 1)^2$
	- the set *M* is compact
	- \bullet ϕ presearves the boundary globally (and not pointwise)
- make use of Alberti-Csörnyei-Preiss covering: any compact set $M \subset (0,1)^2$ can be covered with by horizontal and vertical 1-Lipschitz strips with:
	- Total area of strips $\leq C\sqrt{|M|}$
	- number of intersections of horizontal (and respectively vertical) strips controlled uniformly
- Stretch the strips by a factor τ (explicit formula).

Construction of the Stretching Maps

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

KORK ERKERKER ADAM

Thank you for your attention

Literature:

• J.F. and Olivier Kneuss, *Bi-Lipschitz Solutions to the Prescribed Jacobian Inequality in the Plane and Applications to Nonlinear Elasticity,* submitted, 2014