Variational Formula for First Passage Percolation

Arjun Krishnan

Fields Institute, Toronto. (work done in the Courant Institute, New York)

Fields Postdoc Seminar, Oct 16 2014

KORKA SERKER ORA

 \blacktriangleright Positive random edge-weights on nearest-neighbour graph on \mathbb{Z}^d .

イロト イ押 トイヨト イヨト

 2990

B

- \blacktriangleright Positive random edge-weights on nearest-neighbour graph on \mathbb{Z}^d .
- **Path** $\gamma(x, y)$ has total weight $W(\gamma(x, y)) =$ sum of edge-weights

KORK STRAIN A BAR SHOP

- \blacktriangleright Positive random edge-weights on nearest-neighbour graph on \mathbb{Z}^d .
- **Path** $\gamma(x, y)$ has total weight $W(\gamma(x, y)) =$ sum of edge-weights

$$
\blacktriangleright
$$
 First-Passage Time:

$$
T(x,y) = \inf_{\gamma} W(\gamma(x,y))
$$

KORK STRAIN A BAR SHOP

- \blacktriangleright Positive random edge-weights on nearest-neighbour graph on \mathbb{Z}^d .
- **Path** $\gamma(x, y)$ has total weight $W(\gamma(x, y)) =$ sum of edge-weights

$$
\blacktriangleright
$$
 First-Passage Time:

$$
T(x,y) = \inf_{\gamma} W(\gamma(x,y))
$$

KORK STRAIN A BAR SHOP

 \blacktriangleright Will write $T(x)$ for $T(x, 0)$ in general

What do we want to compute?

Time-constant $g(x)$

► Fix $x \in \mathbb{R}^d$, consider an "average" time to travel in direction x. $T_n(x) = \frac{T(\lfloor nx \rfloor)}{n}$

What do we want to compute? Time-constant $g(x)$

► Fix $x \in \mathbb{R}^d$, consider an "average" time to travel in direction x. $T_n(x) = \frac{T(\lfloor nx \rfloor)}{n}$

 \blacktriangleright Triangle inequality for passage-time:

 $T(x, y) \leq T(x, z) + T(z, y)$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

What do we want to compute? Time-constant $g(x)$

► Fix $x \in \mathbb{R}^d$, consider an "average" time to travel in direction x. $T_n(x) = \frac{T(\lfloor nx \rfloor)}{n}$

 \blacktriangleright Triangle inequality for passage-time:

$$
T(x,y) \leq T(x,z) + T(z,y)
$$

▶ Subadditive Ergodic Theorem [Kingman, 1968]:

$$
\lim_{n\to\infty}T_n(x)=g(x).
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

What do we want to compute? Time-constant $g(x)$

► Fix $x \in \mathbb{R}^d$, consider an "average" time to travel in direction x. $T_n(x) = \frac{T(\lfloor nx \rfloor)}{n}$

 \blacktriangleright Triangle inequality for passage-time:

$$
T(x,y)\leq T(x,z)+T(z,y)
$$

▶ Subadditive Ergodic Theorem [Kingman, 1968]:

$$
\lim_{n\to\infty}T_n(x)=g(x).
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \blacktriangleright $g(x)$ is called time-constant.

Motivation: the limit-shape

Consider sites occupied by time t:

$$
R_t := \{x \in \mathbb{R}^d \mid \mathcal{T}([x]) \leq t\},\
$$

We're interested in the limiting behavior of this set.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Motivation: the limit-shape

Consider sites occupied by time t:

$$
R_t := \{x \in \mathbb{R}^d \mid \mathcal{T}([x]) \leq t\},\
$$

We're interested in the limiting behavior of this set.

Theorem [Cox and Durrett, 1981]

$$
\lim_{t\to\infty} R_t/t = \{x : g(x) \leq 1\}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Time constant solves a PDE

 \blacktriangleright Movement of light in a medium: Eikonal equation.

$$
c(x)|Du(x)|=1, \quad u(0)=0
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 $c(x)$ is the speed of light.

Time constant solves a PDE

 \triangleright Movement of light in a medium: Eikonal equation.

$$
c(x)|Du(x)|=1, \quad u(0)=0
$$

 $c(x)$ is the speed of light.

 \blacktriangleright Time-constant satisfies a Hamilton-Jacobi-Bellman equation:

$$
H(Dg(x)) = 1, \quad g(0) = 0.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Time constant solves a PDE

 \triangleright Movement of light in a medium: Eikonal equation.

$$
c(x)|Du(x)|=1, \quad u(0)=0
$$

 $c(x)$ is the speed of light.

 \blacktriangleright Time-constant satisfies a Hamilton-Jacobi-Bellman equation:

$$
H(Dg(x)) = 1, \quad g(0) = 0.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \blacktriangleright $g(x)$ is a norm on \mathbb{R}^d

Time constant solves a PDE

 \triangleright Movement of light in a medium: Eikonal equation.

$$
c(x)|Du(x)|=1, \quad u(0)=0
$$

 $c(x)$ is the speed of light.

 \blacktriangleright Time-constant satisfies a Hamilton-Jacobi-Bellman equation:

$$
H(Dg(x)) = 1, \quad g(0) = 0.
$$

- \blacktriangleright $g(x)$ is a norm on \mathbb{R}^d
- By convex duality $H(p)$ is the dual norm:

$$
H(p) = \sup_{g(x)=1} x \cdot p
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Notation for edge-weights

In Let $A := \{\pm e_1, \ldots, \pm e_d\}$ where e_i unit vectors on \mathbb{Z}^d

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Notation for edge-weights

- In Let $A := \{\pm e_1, \ldots, \pm e_d\}$ where e_i unit vectors on \mathbb{Z}^d
- \blacktriangleright $\tau(z,\alpha,\cdot)$ represents edge-weight at $z\in\mathbb{Z}^{d}$ in the $\alpha\in\mathcal{A}$ direction

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Notation for edge-weights

- In Let $A := \{\pm e_1, \ldots, \pm e_d\}$ where e_i unit vectors on \mathbb{Z}^d
- \blacktriangleright $\tau(z,\alpha,\cdot)$ represents edge-weight at $z\in\mathbb{Z}^{d}$ in the $\alpha\in\mathcal{A}$ direction
- \triangleright Weights are stationary and ergodic (e.g. i.i.d.), and they're uniformly bounded (away from 0 and from above)

KORKA SERKER ORA

Assume symmetry in the medium (only for the examples) $\tau(x, \alpha, \omega) \in \{a, b, c, d\}, \ \alpha \in \{\pm e_1, \pm e_2\}$ $\tau(\cdot,\cdot,\omega)$ is constant along $x + y = z$.

 QQ

What to expect in the examples

 \triangleright Will show consider two kinds of media: periodic and random

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

What to expect in the examples

- \triangleright Will show consider two kinds of media: periodic and random
- \triangleright Will play around with edge-weight marginals; all supported on [1, 2]. All will have $E[\tau] = 1.5$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

What to expect in the examples

- \triangleright Will show consider two kinds of media: periodic and random
- \triangleright Will play around with edge-weight marginals; all supported on [1, 2]. All will have $E[\tau] = 1.5$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

► Will see the level sets $\{p \in \mathbb{R}^2 : H(p) = 1\}.$

What to expect in the examples

- \triangleright Will show consider two kinds of media: periodic and random
- \triangleright Will play around with edge-weight marginals; all supported on [1, 2]. All will have $E[\tau] = 1.5$.

KORKAR KERKER E VOOR

- ► Will see the level sets $\{p \in \mathbb{R}^2 : H(p) = 1\}.$
- \blacktriangleright The "bigger" the Hamiltonian level-set, the slower the percolation. It's a speed-time duality.

Example: Periodic Medium $\tau(\cdot,\cdot,\omega) \in \{a,b\}, a < b$

 299 目

Example: Periodic Medium $\tau(\cdot,\cdot,\omega) \in \{a,b\}, a < b$

 299 造

Limit Shape: Periodic Medium $\tau \in \{1, 2\}$, Plot of $H(p) = 1$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q ⊙

Limit Shape: Comparing different media $\tau \in \{1, 2\}$, uniform measure, plot of $H(p) = 1$

KORK EX KEY CRACK

Limit Shape: Comparing different media $\tau \in \{1, 1.33, 1.66, 2\}$, uniform measure, plot of $H(p) = 1$

KORK EX KEY CRACK

Limit Shape: Comparing different media

K ロ X K 메 X K B X X B X X D X O Q Q O

Limit Shape: Comparing different media $\tau \in \{1, 1.2, 1.4, 1.6, 1.8, 2\}$, uniform measure, plot of $H(p) = 1$

KORK EX KEY CRACK

Limit Shape: Comparing different media

 2990 Ε

A middle-of-the-talk outline

\blacktriangleright What's already known? Very little.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

A middle-of-the-talk outline

- \blacktriangleright What's already known? Very little.
- \blacktriangleright Main result: a new variational formula for $H(p)$

A middle-of-the-talk outline

- \blacktriangleright What's already known? Very little.
- \blacktriangleright Main result: a new variational formula for $H(p)$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 \triangleright An algorithm to solve the variational problem

A middle-of-the-talk outline

- \blacktriangleright What's already known? Very little.
- \blacktriangleright Main result: a new variational formula for $H(p)$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright An algorithm to solve the variational problem
- \blacktriangleright Proof sketch

A middle-of-the-talk outline

- \blacktriangleright What's already known? Very little.
- \blacktriangleright Main result: a new variational formula for $H(p)$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright An algorithm to solve the variational problem
- \blacktriangleright Proof sketch
- \blacktriangleright Future work/other applications
\triangleright Simple properties like convexity and compactness known. It's also known that it's generally not a Euclidean ball [Kesten, 1986].

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 \triangleright Simple properties like convexity and compactness known. It's also known that it's generally not a Euclidean ball [Kesten, 1986].

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright For periodic media, the limit shape is generally a polygon.

- \triangleright Simple properties like convexity and compactness known. It's also known that it's generally not a Euclidean ball [Kesten, 1986].
- \triangleright For periodic media, the limit shape is generally a polygon.
- \triangleright For very special edge-weight distributions, limit shape has flat spots.

KORK STRATER STRAKER

- \triangleright Simple properties like convexity and compactness known. It's also known that it's generally not a Euclidean ball [Kesten, 1986].
- \triangleright For periodic media, the limit shape is generally a polygon.
- \triangleright For very special edge-weight distributions, limit shape has flat spots.

KORK ERKER ADE YOUR

 \triangleright Exact limit shapes can be calculated for two special edge-weight distributions Johansson [2000], Seppäläinen [1998].

- \triangleright Simple properties like convexity and compactness known. It's also known that it's generally not a Euclidean ball [Kesten, 1986].
- \triangleright For periodic media, the limit shape is generally a polygon.
- \triangleright For very special edge-weight distributions, limit shape has flat spots.
- \triangleright Exact limit shapes can be calculated for two special edge-weight distributions Johansson [2000], Seppäläinen [1998].
- \triangleright KPZ scaling and fluctuations (in $d = 2$):

$$
\mathcal{T}([nx]) \sim g(x)n + n^{1/3}\xi
$$

 ξ is a random variable that's Tracy-Widom distributed (from random matrix theory) [Johansson, 2000]. Is it universal?

Notation for main theorem Edge-weights

Recall unit directions A, edge-weights $\tau(z, \alpha, \cdot)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Notation for main theorem Edge-weights

Recall unit directions A, edge-weights $\tau(z, \alpha, \cdot)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

• For
$$
f : \mathbb{Z}^d \to \mathbb{R}
$$
, discrete derivative is
\n
$$
Df(x, \alpha) = f(x + \alpha) - f(x).
$$

Notation for main theorem Edge-weights

Recall unit directions A, edge-weights $\tau(z, \alpha, \cdot)$

• For
$$
f : \mathbb{Z}^d \to \mathbb{R}
$$
, discrete derivative is

$$
Df(x, \alpha) = f(x + \alpha) - f(x).
$$

 \triangleright Will optimize functions f, such that $E[DF] = 0$, Df stationary.

Main Theorem

Variational Formula

Theorem For $p \in \mathbb{R}^d$, the dual norm of $g(x)$ is given by

$$
H(p) = \inf_{f \in S} \operatorname{ess} \sup_{\omega \in \Omega} \mathcal{H}(Df + p, x, \omega),
$$

where

 H is the discrete Hamiltonian

[Link:algorithm](#page-53-0)
Added Added A

S is a set of functions.

Main Theorem Variational Formula

Theorem For $p \in \mathbb{R}^d$, the dual norm of $g(x)$ is given by

$$
H(p) = \inf_{f \in S} \operatorname{ess} \sup_{\omega \in \Omega} \mathcal{H}(Df + p, x, \omega),
$$

where

$$
\mathcal{H}(Df + p, x, \omega) = \sup_{\alpha \in A} \left\{ -\frac{Df(x, \alpha) + p \cdot \alpha}{\tau(x, \alpha, \omega)} \right\},
$$

$$
S = \left\{ f : \mathbb{Z}^d \to \mathbb{R} \mid E[Df] = 0, Df \text{ stationary} \right\}.
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

What does the variational formula mean?

 \blacktriangleright Had a sequence of minimization problems $T_n(x)$; minimization was over paths

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

What does the variational formula mean?

- \blacktriangleright Had a sequence of minimization problems $T_n(x)$; minimization was over paths
- Replace this with a single variational problem for $H(p)$; minimization over functions

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

What does the variational formula mean?

- \blacktriangleright Had a sequence of minimization problems $T_n(x)$; minimization was over paths
- Replace this with a single variational problem for $H(p)$; minimization over functions
- \triangleright Think of this is a nonlinear duality principle:

$$
g(x) = \lim_{n \to \infty} \frac{1}{n} \inf_{\text{paths}} (\text{``convex fin''})
$$

$$
= \sup_{f \in S} (\text{``Legendre transform''})
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Application Exact limit-shape by iteration

 \blacktriangleright How many analysts does it take to change a lightbulb?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Application

Exact limit-shape by iteration

 \blacktriangleright How many analysts does it take to change a lightbulb?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright We will provide explicit algorithm.

Application

Exact limit-shape by iteration

- \blacktriangleright How many analysts does it take to change a lightbulb?
- \triangleright We will provide explicit algorithm.
- \triangleright Will prove convergence in special symmetric setting.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Application

Exact limit-shape by iteration

- \blacktriangleright How many analysts does it take to change a lightbulb?
- \triangleright We will provide explicit algorithm.
- \triangleright Will prove convergence in special symmetric setting.

Symmetry Assumption

For each $z \in \mathbb{Z}$, assume

$$
\tau(x,\cdot,\omega)=\tau(y,\cdot,\omega)\quad \forall\; x+y=z.
$$

KORK STRATER STRAKER

Algorithm to produce a minimizer

Theorem: constructing the minimizer

For any $f_0 \in S$, we give an explicit $\mathcal{I}: S \to S$ such that the sequence defined by

$$
f_{n+1}=I(f_n),
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

converges to a minimizer.

Algorithm to produce a minimizer

Theorem: constructing the minimizer

For any $f_0 \in S$, we give an explicit $\mathcal{I}: S \to S$ such that the sequence defined by

$$
f_{n+1}=I(f_n),
$$

converges to a minimizer.

Proof implies

One of the following happens:

- \blacktriangleright Algorithm terminates in finite time at a corrector
- \triangleright Algorithm terminates in finite-time at a generic minimizer
- \triangleright Algorithm continues to infinity, produces corrector in limit

Algorithm in action

Show animation of algorithm in action

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Algorithm in action

Show animation of algorithm in action

メロメ メ都 メメ きょ メモメ

重

 299

The local characterization

Dynamic Programming Principle:

$$
T(x) = \inf_{\alpha \in A} \{ T(x + \alpha) + \tau(x, \alpha) \}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The local characterization

Dynamic Programming Principle:

$$
T(x) = \inf_{\alpha \in A} \{ T(x + \alpha) + \tau(x, \alpha) \}.
$$

 \blacktriangleright Difference equation:

$$
\sup_{\alpha}\left\{-\frac{(\mathcal{T}(x+\alpha)-\mathcal{T}(x))}{\tau(x,\alpha)}\right\}=1.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

The local characterization

▶ Dynamic Programming Principle:

$$
T(x) = \inf_{\alpha \in A} \{ T(x + \alpha) + \tau(x, \alpha) \}.
$$

 \blacktriangleright Difference equation:

$$
\sup_{\alpha}\left\{-\frac{(\mathcal{T}(x+\alpha)-\mathcal{T}(x))}{\tau(x,\alpha)}\right\}=1.
$$

Introduce scaling: $T_n(x) := T(\lfloor nx \rfloor)/n$, get homogenization problem

$$
\mathcal{H}(DT_n(x),[nx]) + O(n^{-1}) = 1, \quad T_n(0) = 0.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The local characterization

▶ Dynamic Programming Principle:

$$
T(x) = \inf_{\alpha \in A} \{ T(x + \alpha) + \tau(x, \alpha) \}.
$$

 \blacktriangleright Difference equation:

$$
\sup_{\alpha}\left\{-\frac{(\mathcal{T}(x+\alpha)-\mathcal{T}(x))}{\tau(x,\alpha)}\right\}=1.
$$

Introduce scaling: $T_n(x) := T(\lfloor nx \rfloor)/n$, get homogenization problem

$$
\mathcal{H}(DT_n(x),[nx]) + O(n^{-1}) = 1, \quad T_n(0) = 0.
$$

► Take a limit as $n \to \infty$, and show

$$
H(Dg(x))=1.
$$

KORK ERKER ADE YOUR

Two different viewpoints in continuum

Viewpoint 1: Rezakhanlou and Tarver [2000], Kosygina, Rezakhanlou, and Varadhan [2006]

- \blacktriangleright Has flavor of duality principle, uses minimax theorem.
- \triangleright Method of proof requires superquadratic Hamiltonian (ours is linear) and elliptic diffusion term

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Two different viewpoints in continuum

Viewpoint 1: Rezakhanlou and Tarver [2000], Kosygina, Rezakhanlou, and Varadhan [2006]

- \blacktriangleright Has flavor of duality principle, uses minimax theorem.
- \triangleright Method of proof requires superquadratic Hamiltonian (ours is linear) and elliptic diffusion term

Viewpoint 2: Souganidis [1999], Lions and Souganidis [2005].

 \triangleright Uses "cell-problem" route in homogenization, uses viscosity solution theory.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \blacktriangleright Allows for linear Hamiltonian, no elliptic term needed.

Two different viewpoints in continuum

Viewpoint 1: Rezakhanlou and Tarver [2000], Kosygina, Rezakhanlou, and Varadhan [2006]

- \blacktriangleright Has flavor of duality principle, uses minimax theorem.
- \triangleright Method of proof requires superquadratic Hamiltonian (ours is linear) and elliptic diffusion term

Viewpoint 2: Souganidis [1999], Lions and Souganidis [2005].

- \triangleright Uses "cell-problem" route in homogenization, uses viscosity solution theory.
- \blacktriangleright Allows for linear Hamiltonian, no elliptic term needed.

Discrete versions

Krishnan [2013], Georgiou, Rassoul-Agha, and Seppäläinen [2013].

The cell-problem and the multiple scales ansatz

Homogenization problem

Given

$$
\mathcal{H}(Du_{\epsilon},\epsilon^{-1}x)=1,\quad u_{\epsilon}(0)=0.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 $u_{\epsilon}(x) \rightarrow u(x)$ as $\epsilon \rightarrow 0$?

The cell-problem and the multiple scales ansatz

Homogenization problem

Given

$$
\mathcal{H}(Du_{\epsilon},\epsilon^{-1}x)=1,\quad u_{\epsilon}(0)=0.
$$

$$
u_{\epsilon}(x) \to u(x) \text{ as } \epsilon \to 0?
$$

Multiple scales ansatz Let $u_{\epsilon}(x) = u(x) + \epsilon v(\epsilon^{-1}x)$.

$$
\mathcal{H}(Du(x)+Dv(\epsilon^{-1}x),\epsilon^{-1}x)=1.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

The cell-problem and the multiple scales ansatz

Homogenization problem

Given

$$
\mathcal{H}(Du_{\epsilon},\epsilon^{-1}x)=1,\quad u_{\epsilon}(0)=0.
$$

$$
u_{\epsilon}(x) \to u(x) \text{ as } \epsilon \to 0?
$$

Multiple scales ansatz Let $u_{\epsilon}(x) = u(x) + \epsilon v(\epsilon^{-1}x)$. $\mathcal{H}(Du(x)+Dv(\epsilon^{-1}x),\epsilon^{-1}x)=1.$

Cell problem

For fixed $p \in \mathbb{R}^d$, can you find $v(y)$ with sublinear growth such that

$$
\mathcal{H}(p+Dv(y),y)=1
$$

KORKAR KERKER EL VOLO

Proof sketch: some issues

Local characterization not sufficient

Consider first-passage percolation with constant edge-weights in one dimension.

$$
|T(x+1)-T(x)|=1 \quad \forall x\in\mathbb{Z},\quad T(0)=0
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

Proof sketch: some issues

Local characterization not sufficient

Consider first-passage percolation with constant edge-weights in one dimension.

$$
|T(x+1)-T(x)|=1 \quad \forall x\in\mathbb{Z}, \quad T(0)=0
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

The solution we want is, of course, $T(x) = |x|$.

Proof sketch: some issues

Local characterization not sufficient

Consider first-passage percolation with constant edge-weights in one dimension.

$$
|T(x+1)-T(x)|=1 \quad \forall x\in\mathbb{Z},\quad T(0)=0
$$

The solution we want is, of course, $T(x) = |x|$.

Problem

Solution is non-unique.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Proof sketch

Uniqueness problem

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

Proof sketch

Uniqueness problem

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q^

However

Solved in continuum by choosing viscosity solution.
Take problem into continuum

Make edge-weight function $\tau_{\delta}(x)$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q ⊙

Take problem into continuum

Make edge-weight function $\tau_{\delta}(x)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Future Work/Open Questions Iteration and Regularity

 \blacktriangleright Upgraded full iteration without symmetry assumption.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Future Work/Open Questions Iteration and Regularity

- \triangleright Upgraded full iteration without symmetry assumption.
- **►** Strict convexity of $H(p) \Leftrightarrow$ regularity of $g(x)$. Use iteration to prove existence of correctors, uniqueness of minimizer and hence strict convexity of $H(p)$?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Future Work/Open Questions Iteration and Regularity

- \triangleright Upgraded full iteration without symmetry assumption.
- **►** Strict convexity of $H(p) \Leftrightarrow$ regularity of $g(x)$. Use iteration to prove existence of correctors, uniqueness of minimizer and hence strict convexity of $H(p)$?
- \blacktriangleright I believe this is possible for monotone Hamiltonians (directed first-passage percolation, polymer models).

KORKAR KERKER EL VOLO

Future Work/Open Questions Fluctuations

 \triangleright As stated earlier, model is conjecturally in the KPZ universality class: (both scale and fluctuations)

$$
\mathcal{T}([nx]) \sim g(x)n + n^{1/3}\xi
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 ξ is Tracy-Widom distributed.

Future Work/Open Questions Fluctuations

 \triangleright As stated earlier, model is conjecturally in the KPZ universality class: (both scale and fluctuations)

$$
\mathcal{T}([nx]) \sim g(x)n + n^{1/3}\xi
$$

 ξ is Tracy-Widom distributed.

 \triangleright First step is to get the right scale of fluctuations (best known upper bound is $(n/\log(n))^{1/2}$ due to Benjamini et al. [2003]).

KORKAR KERKER EL VOLO

Acknowledgements

▶ S. Chatterjee, S.R.S Varadhan, R.V. Kohn

Acknowledgements

▶ S. Chatterjee, S.R.S Varadhan, R.V. Kohn

 \blacktriangleright M. Harel, B. Mehrdad, J. Portegeis