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First Passage Percolation on the Lattice

I Positive random
edge-weights on
nearest-neighbour graph on
Zd .

I Path γ(x , y) has total
weight W (γ(x , y)) = sum of
edge-weights

I First-Passage Time:

T (x , y) = inf
γ

W (γ(x , y))

I Will write T (x) for T (x , 0)
in general



First Passage Percolation on the Lattice

I Positive random
edge-weights on
nearest-neighbour graph on
Zd .

I Path γ(x , y) has total
weight W (γ(x , y)) = sum of
edge-weights

I First-Passage Time:

T (x , y) = inf
γ

W (γ(x , y))

I Will write T (x) for T (x , 0)
in general



First Passage Percolation on the Lattice

I Positive random
edge-weights on
nearest-neighbour graph on
Zd .

I Path γ(x , y) has total
weight W (γ(x , y)) = sum of
edge-weights

I First-Passage Time:

T (x , y) = inf
γ

W (γ(x , y))

I Will write T (x) for T (x , 0)
in general



First Passage Percolation on the Lattice

I Positive random
edge-weights on
nearest-neighbour graph on
Zd .

I Path γ(x , y) has total
weight W (γ(x , y)) = sum of
edge-weights

I First-Passage Time:

T (x , y) = inf
γ

W (γ(x , y))

I Will write T (x) for T (x , 0)
in general



What do we want to compute?
Time-constant g(x)

I Fix x ∈ Rd , consider an “average” time to travel in direction
x .

Tn(x) =
T ([nx ])

n

I Triangle inequality for passage-time:

T (x , y) ≤ T (x , z) + T (z , y)

I Subadditive Ergodic Theorem [Kingman, 1968]:

lim
n→∞

Tn(x) = g(x).

I g(x) is called time-constant.
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Motivation: the limit-shape

Consider sites occupied by time t:

Rt := {x ∈ Rd | T ([x ]) ≤ t},

We’re interested in the limiting behavior of this set.

O

Rt



Motivation: the limit-shape

Consider sites occupied by time t:

Rt := {x ∈ Rd | T ([x ]) ≤ t},

We’re interested in the limiting behavior of this set.

Theorem [Cox and Durrett, 1981]

lim
t→∞

Rt/t = {x : g(x) ≤ 1}



What do we prove?
Time constant solves a PDE

I Movement of light in a medium: Eikonal equation.

c(x)|Du(x)| = 1, u(0) = 0

c(x) is the speed of light.

I Time-constant satisfies a Hamilton-Jacobi-Bellman equation:

H(Dg(x)) = 1, g(0) = 0.

I g(x) is a norm on Rd

I By convex duality H(p) is the dual norm:

H(p) = sup
g(x)=1

x · p
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Notation for edge-weights

I Let A := {±e1, . . . ,±ed} where ei unit vectors on Zd

I τ(z , α, ·) represents edge-weight at z ∈ Zd in the α ∈ A
direction

I Weights are stationary and ergodic (e.g. i.i.d.), and they’re
uniformly bounded (away from 0 and from above)



Notation for edge-weights

I Let A := {±e1, . . . ,±ed} where ei unit vectors on Zd

I τ(z , α, ·) represents edge-weight at z ∈ Zd in the α ∈ A
direction

I Weights are stationary and ergodic (e.g. i.i.d.), and they’re
uniformly bounded (away from 0 and from above)



Notation for edge-weights

I Let A := {±e1, . . . ,±ed} where ei unit vectors on Zd

I τ(z , α, ·) represents edge-weight at z ∈ Zd in the α ∈ A
direction

I Weights are stationary and ergodic (e.g. i.i.d.), and they’re
uniformly bounded (away from 0 and from above)



Assume symmetry in the medium (only for the examples)
τ(x , α, ω) ∈ {a, b, c, d}, α ∈ {±e1,±e2}

τ(·, ·, ω) is constant along x + y = z .
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Examples of limit shapes
What to expect in the examples

I Will show consider two kinds of media: periodic and random

I Will play around with edge-weight marginals; all supported on
[1, 2]. All will have E [τ ] = 1.5.

I Will see the level sets {p ∈ R2 : H(p) = 1}.

I The “bigger” the Hamiltonian level-set, the slower the
percolation. It’s a speed-time duality.
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Example: Periodic Medium
τ(·, ·, ω) ∈ {a, b}, a < b
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Limit Shape: Periodic Medium
τ ∈ {1, 2}, Plot of H(p) = 1



Limit Shape: Comparing different media
τ ∈ {1, 2}, uniform measure, plot of H(p) = 1



Limit Shape: Comparing different media
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Limit Shape: Comparing different media
τ ∈ {1, 1.2, 1.4, 1.6, 1.8, 2}, uniform measure, plot of H(p) = 1



Limit Shape: Comparing different media



Outline
A middle-of-the-talk outline

I What’s already known? Very little.

I Main result: a new variational formula for H(p)

I An algorithm to solve the variational problem

I Proof sketch

I Future work/other applications
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A selection of results

I Simple properties like convexity and compactness known. It’s
also known that it’s generally not a Euclidean ball [Kesten,
1986].

I For periodic media, the limit shape is generally a polygon.

I For very special edge-weight distributions, limit shape has flat
spots.

I Exact limit shapes can be calculated for two special
edge-weight distributions Johansson [2000], Seppäläinen
[1998].

I KPZ scaling and fluctuations (in d = 2):

T ([nx ]) ∼ g(x)n + n1/3ξ

ξ is a random variable that’s Tracy-Widom distributed (from
random matrix theory) [Johansson, 2000]. Is it universal?
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Notation for main theorem
Edge-weights

I Recall unit directions A, edge-weights τ(z , α, ·)

I For f : Zd → R, discrete derivative is
Df (x , α) = f (x + α)− f (x).

I Will optimize functions f , such that E [Df ] = 0, Df stationary.
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Main Theorem
Variational Formula

Theorem
For p ∈ Rd , the dual norm of g(x) is given by

H(p) = inf
f ∈S

ess sup
ω∈Ω

H(Df + p, x , ω),

where

H is the discrete Hamiltonian

S is a set of functions.

Link:algorithm



Main Theorem
Variational Formula

Theorem
For p ∈ Rd , the dual norm of g(x) is given by

H(p) = inf
f ∈S

ess sup
ω∈Ω

H(Df + p, x , ω),

where

H(Df + p, x , ω) = sup
α∈A

{
−Df (x , α) + p · α

τ(x , α, ω)

}
,

S =
{

f : Zd → R | E [Df ] = 0,Df stationary
}
.



What does the variational formula mean?

I Had a sequence of minimization problems Tn(x);
minimization was over paths

I Replace this with a single variational problem for H(p);
minimization over functions

I Think of this is a nonlinear duality principle:

g(x) = lim
n→∞

1

n
inf

paths
(“convex fn”)

= sup
f ∈S

(“Legendre transform”)
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Application
Exact limit-shape by iteration

I How many analysts does it take to change a lightbulb?

I We will provide explicit algorithm.

I Will prove convergence in special symmetric setting.

Symmetry Assumption

For each z ∈ Z, assume

τ(x , ·, ω) = τ(y , ·, ω) ∀ x + y = z .
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Algorithm to produce a minimizer

Theorem: constructing the minimizer

For any f0 ∈ S , we give an explicit I : S → S such that the
sequence defined by

fn+1 = I (fn),

converges to a minimizer.

Proof implies

One of the following happens:

I Algorithm terminates in finite time at a corrector

I Algorithm terminates in finite-time at a generic minimizer

I Algorithm continues to infinity, produces corrector in limit
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Algorithm in action

Show animation of algorithm in action
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Proof sketch: where does the PDE come from?
The local characterization

I Dynamic Programming Principle:

T (x) = inf
α∈A
{T (x + α) + τ(x , α)}.

I Difference equation:

sup
α

{
−(T (x + α)− T (x))

τ(x , α)

}
= 1.

I Introduce scaling: Tn(x) := T ([nx ])/n, get homogenization
problem

H(DTn(x), [nx ]) + O(n−1) = 1, Tn(0) = 0.

I Take a limit as n→∞, and show

H(Dg(x)) = 1.
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Two different viewpoints in continuum

Viewpoint 1: Rezakhanlou and Tarver [2000], Kosygina,
Rezakhanlou, and Varadhan [2006]

I Has flavor of duality principle, uses minimax theorem.

I Method of proof requires superquadratic Hamiltonian (ours is
linear) and elliptic diffusion term

Viewpoint 2: Souganidis [1999], Lions and Souganidis [2005].

I Uses “cell-problem” route in homogenization, uses viscosity
solution theory.

I Allows for linear Hamiltonian, no elliptic term needed.

Discrete versions
Krishnan [2013], Georgiou, Rassoul-Agha, and Seppäläinen [2013].
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The cell-problem and the multiple scales ansatz

Homogenization problem

Given
H(Duε, ε

−1x) = 1, uε(0) = 0.

uε(x)→ u(x) as ε→ 0?

Multiple scales ansatz

Let uε(x) = u(x) + εv(ε−1x).

H(Du(x) + Dv(ε−1x), ε−1x) = 1.

Cell problem

For fixed p ∈ Rd , can you find v(y) with sublinear growth such
that

H(p + Dv(y), y) = 1
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Proof sketch: some issues
Local characterization not sufficient

Consider first-passage percolation with constant edge-weights in
one dimension.

|T (x + 1)− T (x)| = 1 ∀x ∈ Z, T (0) = 0

The solution we want is, of course, T (x) = |x |.
Problem

Solution is non-unique.
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Proof sketch
Uniqueness problem

|T (x + 1)− T (x)| = 1 ∀x ∈ Z, T (0) = 0

However
Solved in continuum by choosing viscosity solution.
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Make edge-weight function τδ(x)



Take problem into continuum
Make edge-weight function τδ(x)



Future Work/Open Questions
Iteration and Regularity

I Upgraded full iteration without symmetry assumption.

I Strict convexity of H(p)⇔ regularity of g(x).
Use iteration to prove existence of correctors, uniqueness of
minimizer and hence strict convexity of H(p)?

I I believe this is possible for monotone Hamiltonians (directed
first-passage percolation, polymer models).
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Future Work/Open Questions
Fluctuations

I As stated earlier, model is conjecturally in the KPZ
universality class: (both scale and fluctuations)

T ([nx ]) ∼ g(x)n + n1/3ξ

ξ is Tracy-Widom distributed.

I First step is to get the right scale of fluctuations (best known
upper bound is (n/ log(n))1/2 due to Benjamini et al. [2003]).
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