Integrability of pentagram maps and Lax representations

Fedor Soloviev, joint with Boris Khesin

University of Toronto, Fields Institute

December 3rd, 2014

2D case (S'92; OST'10)

2D pentagram map:

Closed and twisted pentagons.

The 2D pentagram map is defined as *Tϕ*(*j*) := (ϕ (*j* − 1)*,* ϕ (*j* + 1)) ∩ (ϕ (*j*)*,* ϕ (*j* + 2)). Choosing appropriate lifts of the points $\phi(j)$ to the vectors V_j in \mathbb{C}^3 , we can associate a difference equation

$$
V_{j+3} = a_{j,2} V_{j+2} + a_{j,1} V_{j+1} + V_j.
$$

. T ransformations $\mathsf{T}^*(\mathsf{a}_{j,1})$ and $\mathsf{T}^*(\mathsf{a}_{j,2})$ are rational functions in *a∗,*1*, a∗,*2.

Continuous limit in the 2D case

In the continuous case, we have a 3rd order linear ordinary differential equation instead of the difference equation $V_{j+3} = a_j V_{j+2} + b_j V_{j+1} + V_j$. The normalization condition $\det\left(V_{j},V_{j+1},V_{j+2}\right)=1$ corresponds to the choice of solutions having the unit Wronskian. More precisely, we have:

Theorem 1

There is a one-to one correspondence between equivalence classes of non-degenerate curves in CP² *(*RP² *) and operators*

$$
L=\partial_x^3+a_1(x)\partial_x+a_0(x),
$$

 $\mathbf{1} \cup \mathbf{1} \cup \mathbf{$

where $a_1(x)$ *,* $a_0(x)$ *are smooth functions.*

Continuous limit in the 2D case

The envelope of the chords $(\gamma(x-\varepsilon), \gamma(x+\varepsilon))$ for different *x* leads to a new curve $\gamma_{\varepsilon}(x)$:

Theorem 2

The corresponding differential operator equals $L_{\varepsilon} = L + \varepsilon^2 [Q_2, L] + O(\varepsilon^3)$, where $Q_2 = (L^{2/3})_+ = \partial^2 + (2/3)a_1(x)$. The equation $L = [Q_2, L]$ is *equivalent to the Boussinesq equation.*

Definitions

A twisted *n*-gon is a map $\phi:\mathbb{Z}\rightarrow \mathbb{P}^d$, such that $\phi(k+n) = M \circ \phi(k)$ for any *k*, and $M \in PSL_{d+1}$. *M* is called the monodromy. None of the $d+1$ consecutive vertices lie on one hyperplane P *d−*1 . Two twisted *n*-gons are equivalent if there is a transformation $g \in PSL_{d+1}$, such that $g \circ \phi_1 = \phi_2$. The dimension of the space of polygons is

$$
\dim \mathcal{P}_n = nd + \dim SL_{d+1} - \dim SL_{d+1} = nd.
$$

One can show that there exists a unique lift of the vertices $v_k = \phi(k) \in \mathbb{P}^d$ to the vectors $V_k \in \mathbb{C}^{d+1}$ satisfying $\det\left(V_j,V_{j+1},...,V_{j+d}\right)=1$ and $V_{j+n}=MV_j,\ j\in\mathbb{Z},$ where $M \in SL_{d+1}$ (provided that $gcd(n, d+1) = 1$). When $gcd(n, d + 1) = 1$, difference equations with *n*-periodic coefficients in *j*:

$$
V_{j+d+1} = a_{j,d} V_{j+d} + a_{j,d-1} V_{j+d-1} + \ldots + a_{j,1} V_{j+1} + (-1)^d V_j, \quad j \in \mathbb{Z},
$$

allow one to introduce coordinates

$$
\{a_{j,k},\ 0\leq j\leq n-1,\ 1\leq k\leq d\} \text{ on the space } \mathcal{P}_{n_{\widehat{\varpi}}\text{-norm of } \widehat{\varpi} \text{ and } \widehat{\varpi}\text{-norm of } \widehat{\varpi} \text{-norm of } \widehat{\varpi} \text{ and } \widehat{\varpi}\text{-norm of } \widehat{\varpi} \text{-norm of } \widehat{\varpi} \text{ and } \widehat{\varpi}\text{-norm of } \widehat{\varpi} \text{-norm of } \widehat{\varpi} \text{ and } \widehat{\varpi}\text{-norm of } \widehat{\varpi} \text{-norm of } \widehat{\varpi} \text{ and } \widehat{\varpi}\text{-norm of } \widehat{\varpi} \text{-norm of } \widehat{\varpi} \text{ and } \widehat{\varpi}\text{-norm of } \widehat{\varpi} \text{-norm of } \widehat{\varpi} \text
$$

Definitions

For a $(d-1)$ -tuple of jumps (positive integers) $I = (i_1, i_2, ..., i_{d-1})$ an *I*-diagonal hyperplane is $P_k := (v_k, v_{k+i_1}, v_{k+i_2}, ..., v_{k+i_{d-1}}).$ Generalized pentagram map in \mathbb{P}^d is

 $Tv_k := P_k \cap P_{k+1} \cap ... \cap P_{k+d-1}$. Clearly, this definition is projectively invariant.

We discovered several integrable cases:

- (a) "Short-diagonal": *I* = (2*,* 2*, ...,* 2) (KS for *d* = 3, Mari-Beffa for higher *d*)
- (b) "Dented": $I_m = I = (1, ..., 1, 2, 1, ..., 1)$ (the only 2 is at the *m*-th place; $1 \le m \le d-1$ is an integer parameter).
- (c) "Deep-dented": $I_m^p = I = (1, ..., 1, p, 1, ..., 1)$ (the number *p* is at the *m*-th place; it has 2 integer parameters *m* and *p*).

Lax representation

A Lax representation is a compatibility condition for an over-determined system of linear equations.

Example.

$$
\begin{cases}\nL\psi = k\psi \\
P\psi = \partial_t\psi\n\end{cases} \Leftrightarrow \partial_t L = [P, L].
$$

As a consequence, $d(\text{tr } L^j)/dt = 0$ for any j . If L is an $n \times n$ matrix, we have *n* conserved quantities.

If L, P depend on an auxiliary parameter λ , we may have more. A discrete zero-curvature equation is a compatibility condition for

$$
\begin{cases} L_{i,t}(\lambda)\psi_{i,t}(\lambda)=\psi_{i+1,t}(\lambda) \\ P_{i,t}(\lambda)\psi_{i,t}(\lambda)=\psi_{i,t+1}(\lambda) \end{cases} \Leftrightarrow L_{i,t+1}(\lambda)=P_{i+1,t}(\lambda)L_{i,t}(\lambda)P_{i,t}^{-1}(\lambda)
$$

$$
\psi_{i,t+1} \xrightarrow{L_{i,t+1}} \psi_{i+1,t+1} \longrightarrow \dots \longrightarrow \psi_{i+n-1,t+1} \xrightarrow{L_{i+n-1,t+1}} \psi_{i+n,t+1}
$$
\n
$$
P_{i,t} \uparrow \qquad P_{i+1,t} \uparrow \qquad P_{i+n-1,t} \uparrow \qquad P_{i+n,t} \uparrow
$$
\n
$$
\psi_{i,t} \xrightarrow{L_{i,t}} \psi_{i+1,t} \longrightarrow \dots \longrightarrow \psi_{i+n-1,t} \xrightarrow{L_{i+n-1,t}} \psi_{i+n,t} \uparrow
$$
\n
$$
\psi_{i,t} \xrightarrow{L_{i,t}} \psi_{i+1,t} \longrightarrow \dots \longrightarrow \psi_{i+n-1,t} \xrightarrow{L_{i+n-1,t}} \psi_{i+n,t} \uparrow
$$

Lax representation

(c) *The "deep-dented" case is more complicated, the Lax function has the size* $(p+2) \times (p+2)$ *.*

In each case there exists a corresponding function Pi,^t .

Definition 4

 M onodromy operators $T_{0,t}$, $T_{1,t}$, ..., $T_{n-1,t}$ are defined as the following ordered products of the Lax functions:

$$
T_{0,t} = L_{n-1,t}L_{n-2,t}...L_{0,t},
$$

\n
$$
T_{1,t} = L_{0,t}L_{n-1,t}L_{n-2,t}...L_{1,t},
$$

\n
$$
T_{2,t} = L_{1,t}L_{0,t}L_{n-1,t}L_{n-2,t}...L_{2,t},
$$

\n...
\n
$$
T_{n-1,t} = L_{n-2,t}L_{n-3,t}...L_{0,t}L_{n-1,t}.
$$

A Floquet-Bloch solution *ψi,^t* of a difference equation $\psi_{i+1,t} = L_{i,t} \psi_{i,t}$ is an eigenvector of the monodromy operator: $\mathcal{T}_{i,t}\psi_{i,t} = w\psi_{i,t}.$ $\sum_{j=1}^{4} \psi_{0,0,j} \equiv 1.$ A normalization of the vector $\psi_{0,0}$ determines $\psi_{i,t}$ uniquely: The spectral curve is defined by $R(w, \lambda) = \det(T_{i,t}(\lambda) - w \cdot Id)$.

Theorem 5 $R(w, \lambda)$ does not depend on *i*, *t*. *Generically, in the cases (a) and (b),* $R(w, \lambda) = 0$ *defines a Riemann surface* Γ *of genus g* = 3*q for odd n and g* = 3*q −* 3 *for even n, where* $q = \lfloor n/2 \rfloor$ *. A Floquet-Bloch solution ψi,^t is a meromorphic vector function on* Γ*.*

Generically, its pole divisor $D_{i,t}$ *has degree g* + 3*.*

Remark. The coefficients of *R*(*w, λ*) are integrals of motion.

Definition 6

The spectral data consists of the generic spectral curve Γ with marked points and a point [*D*] in its Jacobian *J*(Γ).

The map $S : \mathcal{P}_n \to (\Gamma, [D_{0,0}]$, marked points) is called the direct spectral transform.

The map S_{inv} : (Γ, [D], marked points) $\rightarrow \mathcal{P}_n$ is called the inverse spectral transform.

Theorem 7

Both maps S and Sinv are defined on Zariski open subsets. S \circ *S*_{*inv*} = *Id and S*_{*inv*} \circ *S* = *Id whenever the composition is defined.*

Remark. Now the independence of the first integrals follows from the dimension counting.

Main example in this talk: short-diagonal case.

$$
R(w, \lambda) = w4 - w3 \left(\sum_{j=0}^{q} G_j \lambda^{j-n} \right) + w2 \left(\sum_{j=0}^{q} J_j \lambda^{j-q-n} \right) -
$$

$$
- w \left(\sum_{j=0}^{q} I_j \lambda^{j-2n} \right) + \lambda^{-2n}.
$$

Properties of the spectral curve

Theorem 8 (short-diagonal case)

Generically, the genus of the spectral curve Γ *is g* = 3*q for odd n and g* = 3*q −* 3 *for even n, where q* = *⌊n/*2*⌋. It has 5 marked points for odd n (denoted by* O_1 *,* O_2 *,* O_3 *,* W_1 *,* W_2 *) and 8 marked points for even n (O*1*, O*2*, O*3*, O*4*, W*1*, W*2*, W*3*, W*4)*. The corresponding Puiseux series for even n at λ* = 0 *are*

$$
O_1: \t w_1 = \frac{1}{l_0} - \frac{l_1}{l_0^2} \lambda + \mathcal{O}(\lambda^2),
$$

\n
$$
O_{2,3}: \t w_{2,3} = \frac{w_*}{\lambda^q} + \mathcal{O}\left(\frac{1}{\lambda^{q-1}}\right), \t where \t G_0 w_*^2 - J_0 w_* + I_0 = 0,
$$

\n
$$
O_4: \t w_4 = \frac{G_0}{\lambda^n} + \frac{G_1}{\lambda^{n-1}} + \frac{G_2}{\lambda^{n-2}} + \mathcal{O}(\lambda^{3-n}),
$$

And at $\lambda = \infty$ *they are*

$$
W_*: w_{1,2,3,4} = \frac{w_{\infty}}{\lambda^q} + \mathcal{O}\left(\frac{1}{\lambda^{q+1}}\right), w_{\infty}^4 - G_q w_{\infty}^3 + J_q w_{\infty}^2 - I_q w_{\infty} + 1 = 0.
$$

Properties of the spectral curve

The Puiseux series for odd *n* at $\lambda = 0$ are

$$
O_1: \quad k_1 = \frac{1}{l_0} - \frac{l_1}{l_0^2} \lambda + \mathcal{O}(\lambda^2),
$$

\n
$$
O_2: \quad k_{2,3} = \pm \frac{\sqrt{-l_0/G_0}}{\lambda^{n/2}} + \frac{J_0}{2G_0 \lambda^{(n-1)/2}} + \mathcal{O}\left(\frac{1}{\lambda^{(n-2)/2}}\right),
$$

\n
$$
O_3: \quad k_4 = \frac{G_0}{\lambda^n} + \frac{G_1}{\lambda^{n-1}} + \frac{G_2}{\lambda^{n-2}} + \mathcal{O}(\lambda^{3-n}),
$$

And at $\lambda = \infty$ they are

$$
W_{1,2}: \quad k_{1,2,3,4} = \frac{k_{\infty}}{\lambda^{n/2}} + \mathcal{O}\left(\frac{1}{\lambda^{(n+1)/2}}\right), \text{ where } k_{\infty}^4 + J_q k_{\infty}^2 + 1 = 0.
$$

Theorem 9 (short-diagonal case)

► when *n* is odd,

$$
[D_{0,t}] = [D_{0,0} - tD_{13} + tW_{12}],
$$

► when *n* is even.

$$
[D_{0,t}]=\left[D_{0,0}-tO_{14}+\lfloor\frac{t}{2}\rfloor W_{12}+\lfloor\frac{t+1}{2}\rfloor W_{34}\right].
$$

.

(We denote O_{pq} *:=* $O_p + O_q$ *and* W_{pq} *:=* $W_p + W_q$ *).*

Integrability for closed polygons

Closed polygons in \mathbb{CP}^3 correspond to the monodromies $M = \pm \mathsf{Id}$ in $SL(4, \mathbb{C})$. They form a subspace C_n of codimension 15 = dim $SL(4, \mathbb{C})$ in the space of all twisted polygons \mathcal{P}_n . Theorems 7 and 9 hold verbatim for closed manifolds. The genus of Γ drops by 6 for closed polygons, because $M \equiv T_{0,0} |_{\lambda=1}$.

dim base=3q-6 dim torus=3q-9

dim base=3q+3 dim torus=3q-3

The symplectic form

Definition 10 Krichever-Phong's universal formula defines a pre-symplectic form on the space P_n . It is given by the expression:

$$
\omega=-\frac{1}{2}\sum_{\lambda=0,\infty}\text{res Tr}\left(\Psi_{0,0}^{-1}\mathcal{T}_{0,0}^{-1}\delta\mathcal{T}_{0,0}\wedge\delta\Psi_{0,0}\right)\frac{d\lambda}{\lambda},
$$

where the matrix $\Psi_{0,0}(\lambda)$ consists of the vectors $\psi_{0,0}$ taken on different sheets of Γ.

The leaves of the 2-form ω are defined as submanifolds of \mathcal{P}_n , where the expression δ ln $wd\lambda/\lambda$ is holomorphic. The latter expression is considered as a one-form on the spectral curve Γ.

The symplectic form

Theorem 11 (short-diagonal case)

For even n the leaves are singled out by 6 *conditions:*

$$
\delta I_0 = \delta I_q = \delta G_0 = \delta G_q = \delta J_0 = \delta J_q = 0;
$$

For odd n the leaves are singled out by 3 *conditions:*

$$
\delta G_0 = \delta I_0 = \delta J_q = 0.
$$

When restricted to the leaves, ω becomes a symplectic form of rank 2*g, invariant w.r.t the pentagram map.*

Remark. This theorem implies Arnold-Liouvile integrability (in a generalized sense).

The symplectic form

Theorem 12 (Action-angle variables)

Let the divisor of poles of $\psi_{0,0}$ *<i>on* Γ *be* $D_{0,0} = \sum_{s=1}^{g+3} \gamma_s$ *. When restricted to the leaves,*

$$
\omega = \sum_{i=1}^{g+3} \delta \ln w(\gamma_i) \wedge \delta \ln \lambda(\gamma_i) = \sum_{i=1}^{g} \delta \mathbf{I}_i \wedge \delta \varphi_i,
$$

where
$$
I_i = \oint_{a_i} \ln w d\lambda / \lambda
$$
, $\varphi_i = \sum_{s=1}^{g+3} \int^{\gamma_s} d\omega_i$,

.

and one-forms $d\omega_i,~1\leq i\leq g,$ form a basis of $H^0(\Gamma,\Omega^1).$

Dynamics of the pentagram maps

Theorem 13

The above integrable pentagram maps on twisted n-gons in \mathbb{CP}^d *cannot be included into a Hamiltonian flow as its time-one map, at least for some values of n, m, and d.*

This suggests the following

Definition 14

Suppose that (M, ω) is a 2*n*-dimensional symplectic manifold and I_1, \ldots, I_n are *n* independent functions in involution. Let M_c be a (possibly disconnected) level set of these functions: $\mathcal{M}_{\mathbf{c}} = \{ x \in \mathcal{M} \mid l_j(x) = c_j, \; 1 \leq j \leq n \}.$ A map $\mathcal{T}: \mathcal{M} \rightarrow \mathcal{M}$ is called generalized integrable if

- I it is symplectic, i.e., *T ∗ω* = *ω*;
- $▶$ it preserves the integrals of motion: $T^* l_j \equiv l_j, \ 1 \leq j \leq n;$
- $\mathbf{1} \sqcup \mathbf{1} \sqcup \mathbf{$ ► there exists a positive integer $q \ge 1$ such that the map T^q leaves all connected components of level sets *M***^c** invariant for all $\mathbf{c} = (c_1, ..., c_n)$.

References

- ▶ B. Khesin, F. Soloviev, *Non-integrability vs. integrability in pentagram maps,* to appear in Journal of Geom. and Physics; arXiv:1404.6221.
- ► B. Khesin, F. Soloviev, *Integrability of higher pentagram maps,* Math. Ann., vol. 357 (2013), no.3, 1005–1047; arXiv:1204.0756.
- ► B. Khesin, F. Soloviev, *The geometry of dented pentagram maps,* to appear in JEMS (2013), 32pp.; arXiv:1308.5363.
- **F.** Soloviev, *Integrability of the pentagram map*, Duke Math. Journal, vol. 162 (2013), no.15, 2815–2853; arXiv:1106.3950.
- ▶ V. Ovsienko, R. Schwartz, S. Tabachnikov, The pentagram *map: a discrete integrable system,* Comm. Math. Phys., vol. 299 (2010), 409–446; arXiv:0810.5605
- ▶ R. Schwartz, *The pentagram map*, Experiment. Math., vol. 1 (1992), 71–81.