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2D case (S’92; OST’10)
2D pentagram map:

Closed and twisted pentagons.

The 2D pentagram map is defined as
Tϕ(j) := (ϕ(j − 1), ϕ(j + 1)) ∩ (ϕ(j), ϕ(j + 2)). Choosing
appropriate lifts of the points ϕ(j) to the vectors Vj in C3, we can
associate a difference equation

Vj+3 = aj ,2Vj+2 + aj ,1Vj+1 + Vj .

Transformations T ∗(aj ,1) and T ∗(aj ,2) are rational functions in
a∗,1, a∗,2.
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Continuous limit in the 2D case

In the continuous case, we have a 3rd order linear ordinary
differential equation instead of the difference equation
Vj+3 = ajVj+2 + bjVj+1 + Vj . The normalization condition
det (Vj ,Vj+1,Vj+2) = 1 corresponds to the choice of solutions
having the unit Wronskian. More precisely, we have:

Theorem 1
There is a one-to one correspondence between equivalence classes
of non-degenerate curves in CP2 (RP2) and operators

L = ∂3x + a1(x)∂x + a0(x),

where a1(x), a0(x) are smooth functions.



. . . . . .

Continuous limit in the 2D case

The envelope of the chords (γ(x − ε), γ(x + ε)) for different x
leads to a new curve γε(x):

Theorem 2
The corresponding differential operator equals
Lε = L+ ε2[Q2, L] + O(ε3), where
Q2 = (L2/3)+ = ∂2 + (2/3)a1(x). The equation L̇ = [Q2, L] is
equivalent to the Boussinesq equation.
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Definitions
A twisted n-gon is a map ϕ : Z → Pd , such that
ϕ(k + n) = M ◦ ϕ(k) for any k , and M ∈ PSLd+1. M is called the
monodromy. None of the d + 1 consecutive vertices lie on one
hyperplane Pd−1. Two twisted n-gons are equivalent if there is a
transformation g ∈ PSLd+1, such that g ◦ ϕ1 = ϕ2.
The dimension of the space of polygons is

dim Pn = nd + dim SLd+1 − dim SLd+1 = nd .

One can show that there exists a unique lift of the vertices
vk = ϕ(k) ∈ Pd to the vectors Vk ∈ Cd+1 satisfying
det (Vj ,Vj+1, ...,Vj+d) = 1 and Vj+n = MVj , j ∈ Z, where
M ∈ SLd+1 (provided that gcd(n, d + 1) = 1).
When gcd(n, d + 1) = 1, difference equations with n-periodic
coefficients in j :

Vj+d+1 = aj ,dVj+d+aj ,d−1Vj+d−1+...+aj ,1Vj+1+(−1)dVj , j ∈ Z,

allow one to introduce coordinates
{aj ,k , 0 ≤ j ≤ n − 1, 1 ≤ k ≤ d} on the space Pn.
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Definitions
For a (d − 1)-tuple of jumps (positive integers) I = (i1, i2, ..., id−1)
an I -diagonal hyperplane is Pk := (vk , vk+i1 , vk+i2 , ..., vk+id−1

).
Generalized pentagram map in Pd is
Tvk := Pk ∩ Pk+1 ∩ ... ∩ Pk+d−1. Clearly, this definition is
projectively invariant.
We discovered several integrable cases:

(a) “Short-diagonal”: I = (2, 2, ..., 2) (KS for d = 3, Mari-Beffa
for higher d)

(b) “Dented”: Im = I = (1, ..., 1, 2, 1, ..., 1) (the only 2 is at the
m-th place; 1 ≤ m ≤ d − 1 is an integer parameter).

(c) “Deep-dented”: I pm = I = (1, ..., 1, p, 1, ..., 1) (the number p is
at the m-th place; it has 2 integer parameters m and p).

Different diagonal planes in 3D: for T2,1,T1, and T2.
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Lax representation
A Lax representation is a compatibility condition for an
over-determined system of linear equations.
Example. {

Lψ = kψ

Pψ = ∂tψ
⇔ ∂tL = [P , L].

As a consequence, d(tr Lj)/dt = 0 for any j . If L is an n × n
matrix, we have n conserved quantities.
If L,P depend on an auxiliary parameter λ, we may have more.
A discrete zero-curvature equation is a compatibility condition for{
Li ,t(λ)ψi ,t(λ) = ψi+1,t(λ)

Pi ,t(λ)ψi ,t(λ) = ψi ,t+1(λ)
⇔ Li ,t+1(λ) = Pi+1,t(λ)Li ,t(λ)P

−1
i ,t (λ)

ψi ,t+1
Li,t+1−−−→ ψi+1,t+1 −→ ... −→ ψi+n−1,t+1

Li+n−1,t+1−−−−−−→ ψi+n,t+1

Pi,t

x Pi+1,t

x Pi+n−1,t

x Pi+n,t

x
ψi ,t

Li,t−−→ ψi+1,t −→ ... −→ ψi+n−1,t
Li+n−1,t−−−−−→ ψi+n,t
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Lax representation

Theorem 3
In 3D case, i.e., when d = 3, we have:

(a) “Short-diagonal” case: Li ,t(λ) =


0 0 0 −1
λ 0 0 ai ,1
0 1 0 ai ,2
0 0 λ ai ,3


−1

(b) “Dented” case: Li ,t(λ) =


0 0 0 −1

D(λ)
ai ,1
ai ,2
ai ,3


−1

,

where D(λ) = diag (1, λ, 1) or D(λ) = diag (1, 1, λ) (λ is
situated at the (m + 1)-th place)

(c) The “deep-dented” case is more complicated, the Lax function
has the size (p + 2)× (p + 2).

In each case there exists a corresponding function Pi ,t .
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AG integrability

Definition 4
Monodromy operators T0,t ,T1,t , ...,Tn−1,t are defined as the
following ordered products of the Lax functions:

T0,t = Ln−1,tLn−2,t ...L0,t ,

T1,t = L0,tLn−1,tLn−2,t ...L1,t ,

T2,t = L1,tL0,tLn−1,tLn−2,t ...L2,t ,

...

Tn−1,t = Ln−2,tLn−3,t ...L0,tLn−1,t .

A Floquet-Bloch solution ψi ,t of a difference equation
ψi+1,t = Li ,tψi ,t is an eigenvector of the monodromy operator:
Ti ,tψi ,t = wψi ,t .
A normalization of the vector ψ0,0 determines ψi ,t uniquely:∑4

j=1 ψ0,0,j ≡ 1.
The spectral curve is defined by R(w , λ) = det (Ti ,t(λ)− w · Id).
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AG integrability

Theorem 5
R(w , λ) does not depend on i , t.
Generically, in the cases (a) and (b), R(w , λ) = 0 defines a
Riemann surface Γ of genus g = 3q for odd n and g = 3q − 3 for
even n, where q = ⌊n/2⌋.
A Floquet-Bloch solution ψi ,t is a meromorphic vector function on
Γ.
Generically, its pole divisor Di ,t has degree g + 3.

Remark. The coefficients of R(w , λ) are integrals of motion.

Definition 6
The spectral data consists of the generic spectral curve Γ with
marked points and a point [D] in its Jacobian J(Γ).
The map S : Pn → (Γ, [D0,0],marked points) is called the direct
spectral transform.
The map Sinv : (Γ, [D],marked points) → Pn is called the inverse
spectral transform.
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AG integrability

Theorem 7
Both maps S and Sinv are defined on Zariski open subsets.
S ◦ Sinv = Id and Sinv ◦ S = Id whenever the composition is
defined.

Remark. Now the independence of the first integrals follows from
the dimension counting.
Main example in this talk: short-diagonal case.

R(w , λ) =w4 − w3

 q∑
j=0

Gjλ
j−n

+ w2

 q∑
j=0

Jjλ
j−q−n

−

− w

 q∑
j=0

Ijλ
j−2n

+ λ−2n.
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Properties of the spectral curve

Theorem 8 (short-diagonal case)

Generically, the genus of the spectral curve Γ is g = 3q for odd n
and g = 3q − 3 for even n, where q = ⌊n/2⌋. It has 5 marked
points for odd n (denoted by O1,O2,O3,W1,W2) and 8 marked
points for even n (O1,O2,O3,O4,W1,W2,W3,W4). The
corresponding Puiseux series for even n at λ = 0 are

O1 : w1 =
1

I0
− I1

I 20
λ+O(λ2),

O2,3 : w2,3 =
w∗
λq

+O
(

1

λq−1

)
, where G0w

2
∗ − J0w∗ + I0 = 0,

O4 : w4 =
G0

λn
+

G1

λn−1
+

G2

λn−2
+O(λ3−n),

And at λ = ∞ they are

W∗ : w1,2,3,4 =
w∞
λq

+O
(

1

λq+1

)
, w4

∞−Gqw
3
∞+Jqw

2
∞−Iqw∞+1 = 0.
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Properties of the spectral curve

The Puiseux series for odd n at λ = 0 are

O1 : k1 =
1

I0
− I1

I 20
λ+O(λ2),

O2 : k2,3 = ±
√

−I0/G0

λn/2
+

J0
2G0λ(n−1)/2

+O
(

1

λ(n−2)/2

)
,

O3 : k4 =
G0

λn
+

G1

λn−1
+

G2

λn−2
+O(λ3−n),

And at λ = ∞ they are

W1,2 : k1,2,3,4 =
k∞
λn/2

+O
(

1

λ(n+1)/2

)
, where k4∞+Jqk

2
∞+1 = 0.
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AG integrability

Theorem 9 (short-diagonal case)

I when n is odd,

[D0,t ] = [D0,0 − tO13 + tW12],

I when n is even,

[D0,t ] =

[
D0,0 − tO14 + ⌊ t

2
⌋W12 + ⌊ t + 1

2
⌋W34

]
.

(We denote Opq := Op + Oq and Wpq := Wp +Wq).
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Integrability for closed polygons
Closed polygons in CP3 correspond to the monodromies M = ±Id
in SL(4,C). They form a subspace Cn of codimension
15 = dim SL(4,C) in the space of all twisted polygons Pn.
Theorems 7 and 9 hold verbatim for closed manifolds.
The genus of Γ drops by 6 for closed polygons, because
M ≡ T0,0|λ=1.
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The symplectic form

Definition 10
Krichever-Phong’s universal formula defines a pre-symplectic form
on the space Pn. It is given by the expression:

ω = −1

2

∑
λ=0,∞

res Tr
(
Ψ−1

0,0T
−1
0,0 δT0,0 ∧ δΨ0,0

) dλ

λ
,

where the matrix Ψ0,0(λ) consists of the vectors ψ0,0 taken on
different sheets of Γ.
The leaves of the 2-form ω are defined as submanifolds of Pn,
where the expression δ lnwdλ/λ is holomorphic. The latter
expression is considered as a one-form on the spectral curve Γ.
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The symplectic form

Theorem 11 (short-diagonal case)

For even n the leaves are singled out by 6 conditions:

δI0 = δIq = δG0 = δGq = δJ0 = δJq = 0;

For odd n the leaves are singled out by 3 conditions:

δG0 = δI0 = δJq = 0.

When restricted to the leaves, ω becomes a symplectic form of
rank 2g, invariant w.r.t the pentagram map.

Remark. This theorem implies Arnold-Liouvile integrability (in a
generalized sense).
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The symplectic form

Theorem 12 (Action-angle variables)

Let the divisor of poles of ψ0,0 on Γ be D0,0 =
∑g+3

s=1 γs . When
restricted to the leaves,

ω =

g+3∑
i=1

δ lnw(γi ) ∧ δ lnλ(γi ) =
g∑

i=1

δIi ∧ δφi ,

where Ii =

∮
ai

lnwdλ/λ, φi =

g+3∑
s=1

∫ γs

dωi ,

and one-forms dωi , 1 ≤ i ≤ g , form a basis of H0(Γ,Ω1).
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Dynamics of the pentagram maps

Theorem 13
The above integrable pentagram maps on twisted n-gons in CPd

cannot be included into a Hamiltonian flow as its time-one map, at
least for some values of n,m, and d.

This suggests the following

Definition 14
Suppose that (M, ω) is a 2n-dimensional symplectic manifold and
I1, ..., In are n independent functions in involution. Let Mc be a
(possibly disconnected) level set of these functions:
Mc = {x ∈ M | Ij(x) = cj , 1 ≤ j ≤ n}. A map T : M → M is
called generalized integrable if

I it is symplectic, i.e., T ∗ω = ω;

I it preserves the integrals of motion: T ∗Ij ≡ Ij , 1 ≤ j ≤ n;

I there exists a positive integer q ≥ 1 such that the map T q

leaves all connected components of level sets Mc invariant for
all c = (c1, ..., cn).
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