Integrability of pentagram maps and Lax representations

Fedor Soloviev, joint with Boris Khesin

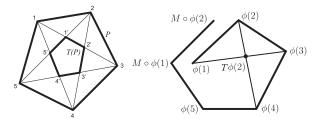
University of Toronto, Fields Institute

December 3rd, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2D case (S'92; OST'10)

2D pentagram map:



Closed and twisted pentagons.

The 2D pentagram map is defined as $T\phi(j) := (\phi(j-1), \phi(j+1)) \cap (\phi(j), \phi(j+2))$. Choosing appropriate lifts of the points $\phi(j)$ to the vectors V_j in \mathbb{C}^3 , we can associate a difference equation

$$V_{j+3} = a_{j,2}V_{j+2} + a_{j,1}V_{j+1} + V_j.$$

Transformations $T^*(a_{j,1})$ and $T^*(a_{j,2})$ are rational functions in $a_{*,1}, a_{*,2}$.

Continuous limit in the 2D case

In the continuous case, we have a 3rd order linear ordinary differential equation instead of the difference equation $V_{j+3} = a_j V_{j+2} + b_j V_{j+1} + V_j$. The normalization condition det $(V_j, V_{j+1}, V_{j+2}) = 1$ corresponds to the choice of solutions having the unit Wronskian. More precisely, we have:

Theorem 1

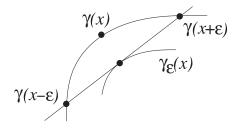
There is a one-to one correspondence between equivalence classes of non-degenerate curves in \mathbb{CP}^2 (\mathbb{RP}^2) and operators

$$L = \partial_x^3 + a_1(x)\partial_x + a_0(x),$$

where $a_1(x), a_0(x)$ are smooth functions.

Continuous limit in the 2D case

The envelope of the chords $(\gamma(x - \varepsilon), \gamma(x + \varepsilon))$ for different x leads to a new curve $\gamma_{\varepsilon}(x)$:



Theorem 2

The corresponding differential operator equals $L_{\varepsilon} = L + \varepsilon^2[Q_2, L] + O(\varepsilon^3)$, where $Q_2 = (L^{2/3})_+ = \partial^2 + (2/3)a_1(x)$. The equation $\dot{L} = [Q_2, L]$ is equivalent to the Boussinesq equation.

Definitions

A twisted *n*-gon is a map $\phi : \mathbb{Z} \to \mathbb{P}^d$, such that $\phi(k+n) = M \circ \phi(k)$ for any k, and $M \in PSL_{d+1}$. M is called the monodromy. None of the d+1 consecutive vertices lie on one hyperplane \mathbb{P}^{d-1} . Two twisted *n*-gons are equivalent if there is a transformation $g \in PSL_{d+1}$, such that $g \circ \phi_1 = \phi_2$. The dimension of the space of polygons is

$$\dim \mathcal{P}_n = nd + \dim SL_{d+1} - \dim SL_{d+1} = nd.$$

One can show that there exists a unique lift of the vertices $v_k = \phi(k) \in \mathbb{P}^d$ to the vectors $V_k \in \mathbb{C}^{d+1}$ satisfying det $(V_j, V_{j+1}, ..., V_{j+d}) = 1$ and $V_{j+n} = MV_j$, $j \in \mathbb{Z}$, where $M \in SL_{d+1}$ (provided that gcd(n, d+1) = 1). When gcd(n, d+1) = 1, difference equations with *n*-periodic coefficients in *j*:

$$V_{j+d+1} = a_{j,d}V_{j+d} + a_{j,d-1}V_{j+d-1} + \ldots + a_{j,1}V_{j+1} + (-1)^dV_j, \quad j \in \mathbb{Z},$$

allow one to introduce coordinates

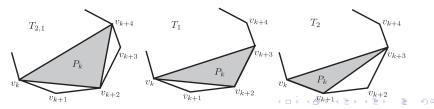
$$\{a_{j,k},\ 0\leq j\leq n-1,\ 1\leq k\leq d\} \text{ on the space } \mathcal{P}_{n_{\text{B}}}, \text{ for all } n \in \mathbb{R}, n \in \mathbb{R} \}$$

Definitions

For a (d-1)-tuple of jumps (positive integers) $I = (i_1, i_2, ..., i_{d-1})$ an *I*-diagonal hyperplane is $P_k := (v_k, v_{k+i_1}, v_{k+i_2}, ..., v_{k+i_{d-1}})$. Generalized pentagram map in \mathbb{P}^d is $Tv_k := P_k \cap P_{k+1} \cap ... \cap P_{k+d-1}$. Clearly, this definition is projectively invariant.

We discovered several integrable cases:

- (a) "Short-diagonal": I = (2, 2, ..., 2) (KS for d = 3, Mari-Beffa for higher d)
- (b) "Dented": $I_m = I = (1, ..., 1, 2, 1, ..., 1)$ (the only 2 is at the *m*-th place; $1 \le m \le d 1$ is an integer parameter).
- (c) "Deep-dented": $I_m^p = I = (1, ..., 1, p, 1, ..., 1)$ (the number p is at the *m*-th place; it has 2 integer parameters m and p).



Lax representation

A Lax representation is a compatibility condition for an over-determined system of linear equations. **Example.**

<

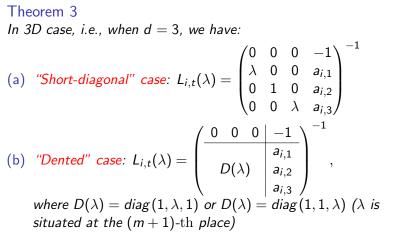
$$\begin{cases} L\psi = k\psi \\ P\psi = \partial_t \psi \end{cases} \Leftrightarrow \partial_t L = [P, L].$$

As a consequence, $d(\operatorname{tr} L^j)/dt = 0$ for any j. If L is an $n \times n$ matrix, we have n conserved quantities.

If L, P depend on an auxiliary parameter λ , we may have more. A discrete zero-curvature equation is a compatibility condition for

$$\begin{cases} L_{i,t}(\lambda)\psi_{i,t}(\lambda) = \psi_{i+1,t}(\lambda) \\ P_{i,t}(\lambda)\psi_{i,t}(\lambda) = \psi_{i,t+1}(\lambda) \end{cases} \Leftrightarrow L_{i,t+1}(\lambda) = P_{i+1,t}(\lambda)L_{i,t}(\lambda)P_{i,t}^{-1}(\lambda) \end{cases}$$

Lax representation



(c) The "deep-dented" case is more complicated, the Lax function has the size $(p + 2) \times (p + 2)$.

In each case there exists a corresponding function $P_{i,t}$.

Definition 4

Monodromy operators $T_{0,t}$, $T_{1,t}$, ..., $T_{n-1,t}$ are defined as the following ordered products of the Lax functions:

$$\begin{split} T_{0,t} &= L_{n-1,t} L_{n-2,t} \dots L_{0,t}, \\ T_{1,t} &= L_{0,t} L_{n-1,t} L_{n-2,t} \dots L_{1,t}, \\ T_{2,t} &= L_{1,t} L_{0,t} L_{n-1,t} L_{n-2,t} \dots L_{2,t}, \\ \dots \\ T_{n-1,t} &= L_{n-2,t} L_{n-3,t} \dots L_{0,t} L_{n-1,t} \end{split}$$

A Floquet-Bloch solution $\psi_{i,t}$ of a difference equation $\psi_{i+1,t} = L_{i,t}\psi_{i,t}$ is an eigenvector of the monodromy operator: $T_{i,t}\psi_{i,t} = w\psi_{i,t}$. A normalization of the vector $\psi_{0,0}$ determines $\psi_{i,t}$ uniquely: $\sum_{j=1}^{4} \psi_{0,0,j} \equiv 1$. The spectral curve is defined by $R(w, \lambda) = \det(T_{i,t}(\lambda) - w \cdot Id)$.

・ロト・西ト・ヨト・ヨー うへぐ

Theorem 5 $R(w, \lambda)$ does not depend on *i*, *t*. Generically, in the cases (a) and (b), $R(w, \lambda) = 0$ defines a Riemann surface Γ of genus g = 3q for odd *n* and g = 3q - 3 for even *n*, where $q = \lfloor n/2 \rfloor$. A Floquet-Bloch solution $\psi_{i,t}$ is a meromorphic vector function on Γ .

Generically, its pole divisor $D_{i,t}$ has degree g + 3.

Remark. The coefficients of $R(w, \lambda)$ are integrals of motion.

Definition 6

The spectral data consists of the generic spectral curve Γ with marked points and a point [D] in its Jacobian $J(\Gamma)$. The map $S : \mathcal{P}_n \to (\Gamma, [D_{0,0}], \text{marked points})$ is called the direct spectral transform

spectral transform.

The map S_{inv} : (Γ , [D], marked points) $\rightarrow \mathcal{P}_n$ is called the inverse spectral transform.

Theorem 7

Both maps S and S_{inv} are defined on Zariski open subsets. S \circ S_{inv} = Id and S_{inv} \circ S = Id whenever the composition is defined.

Remark. Now the independence of the first integrals follows from the dimension counting.

Main example in this talk: short-diagonal case.

$$R(w,\lambda) = w^4 - w^3 \left(\sum_{j=0}^q G_j \lambda^{j-n}\right) + w^2 \left(\sum_{j=0}^q J_j \lambda^{j-q-n}\right) - w \left(\sum_{j=0}^q I_j \lambda^{j-2n}\right) + \lambda^{-2n}.$$

Properties of the spectral curve

Theorem 8 (short-diagonal case)

Generically, the genus of the spectral curve Γ is g = 3q for odd nand g = 3q - 3 for even n, where $q = \lfloor n/2 \rfloor$. It has 5 marked points for odd n (denoted by O_1, O_2, O_3, W_1, W_2) and 8 marked points for even n ($O_1, O_2, O_3, O_4, W_1, W_2, W_3, W_4$). The corresponding Puiseux series for even n at $\lambda = 0$ are

$$\begin{split} O_{1}: & w_{1} = \frac{1}{l_{0}} - \frac{l_{1}}{l_{0}^{2}}\lambda + \mathcal{O}(\lambda^{2}), \\ O_{2,3}: & w_{2,3} = \frac{w_{*}}{\lambda^{q}} + \mathcal{O}\left(\frac{1}{\lambda^{q-1}}\right), \quad \text{where} \quad G_{0}w_{*}^{2} - J_{0}w_{*} + l_{0} = 0, \\ O_{4}: & w_{4} = \frac{G_{0}}{\lambda^{n}} + \frac{G_{1}}{\lambda^{n-1}} + \frac{G_{2}}{\lambda^{n-2}} + \mathcal{O}(\lambda^{3-n}), \end{split}$$

And at $\lambda = \infty$ they are

$$W_*: w_{1,2,3,4} = \frac{w_{\infty}}{\lambda^q} + \mathcal{O}\left(\frac{1}{\lambda^{q+1}}\right), \ w_{\infty}^4 - G_q w_{\infty}^3 + J_q w_{\infty}^2 - I_q w_{\infty} + 1 = 0.$$

Properties of the spectral curve

The Puiseux series for odd *n* at $\lambda = 0$ are

$$\begin{split} O_1: \quad k_1 &= \frac{1}{l_0} - \frac{l_1}{l_0^2} \lambda + \mathcal{O}(\lambda^2), \\ O_2: \quad k_{2,3} &= \pm \frac{\sqrt{-l_0/G_0}}{\lambda^{n/2}} + \frac{J_0}{2G_0\lambda^{(n-1)/2}} + \mathcal{O}\left(\frac{1}{\lambda^{(n-2)/2}}\right), \\ O_3: \quad k_4 &= \frac{G_0}{\lambda^n} + \frac{G_1}{\lambda^{n-1}} + \frac{G_2}{\lambda^{n-2}} + \mathcal{O}(\lambda^{3-n}), \end{split}$$

And at $\lambda=\infty$ they are

$$W_{1,2}: \quad k_{1,2,3,4} = rac{k_\infty}{\lambda^{n/2}} + \mathcal{O}\left(rac{1}{\lambda^{(n+1)/2}}
ight), ext{ where } k_\infty^4 + J_q k_\infty^2 + 1 = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem 9 (short-diagonal case)

when n is odd,

$$[D_{0,t}] = [D_{0,0} - tO_{13} + tW_{12}],$$

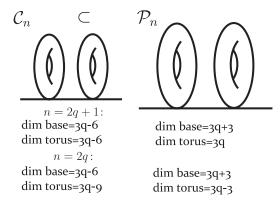
when n is even,

$$[D_{0,t}] = \left[D_{0,0} - tO_{14} + \lfloor \frac{t}{2} \rfloor W_{12} + \lfloor \frac{t+1}{2} \rfloor W_{34}\right].$$

(We denote $O_{pq} := O_p + O_q$ and $W_{pq} := W_p + W_q$).

Integrability for closed polygons

Closed polygons in \mathbb{CP}^3 correspond to the monodromies $M = \pm Id$ in $SL(4, \mathbb{C})$. They form a subspace C_n of codimension $15 = \dim SL(4, \mathbb{C})$ in the space of all twisted polygons \mathcal{P}_n . Theorems 7 and 9 hold verbatim for closed manifolds. The genus of Γ drops by 6 for closed polygons, because $M \equiv T_{0,0}|_{\lambda=1}$.



The symplectic form

Definition 10

Krichever-Phong's universal formula defines a pre-symplectic form on the space \mathcal{P}_n . It is given by the expression:

$$\omega = -\frac{1}{2} \sum_{\lambda=0,\infty} \operatorname{res} \operatorname{Tr} \left(\Psi_{0,0}^{-1} T_{0,0}^{-1} \delta \, T_{0,0} \wedge \delta \Psi_{0,0} \right) \frac{d\lambda}{\lambda},$$

where the matrix $\Psi_{0,0}(\lambda)$ consists of the vectors $\psi_{0,0}$ taken on different sheets of Γ .

The leaves of the 2-form ω are defined as submanifolds of \mathcal{P}_n , where the expression $\delta \ln w d\lambda/\lambda$ is holomorphic. The latter expression is considered as a one-form on the spectral curve Γ .

The symplectic form

Theorem 11 (short-diagonal case)

For even n the leaves are singled out by 6 conditions:

$$\delta I_0 = \delta I_q = \delta G_0 = \delta G_q = \delta J_0 = \delta J_q = 0;$$

For odd n the leaves are singled out by 3 conditions:

$$\delta G_0 = \delta I_0 = \delta J_q = 0.$$

When restricted to the leaves, ω becomes a symplectic form of rank 2g, invariant w.r.t the pentagram map.

Remark. This theorem implies Arnold-Liouvile integrability (in a generalized sense).

The symplectic form

Theorem 12 (Action-angle variables)

Let the divisor of poles of $\psi_{0,0}$ on Γ be $D_{0,0} = \sum_{s=1}^{g+3} \gamma_s$. When restricted to the leaves,

$$\omega = \sum_{i=1}^{g+3} \delta \ln w(\gamma_i) \wedge \delta \ln \lambda(\gamma_i) = \sum_{i=1}^{g} \delta \mathbf{I}_i \wedge \delta \varphi_i,$$

where
$$\mathbf{I}_i = \oint_{\mathbf{a}_i} \ln w d\lambda / \lambda$$
, $\varphi_i = \sum_{s=1}^{g+3} \int_{s=1}^{\gamma_s} d\omega_i$,

and one-forms $d\omega_i$, $1 \le i \le g$, form a basis of $H^0(\Gamma, \Omega^1)$.

Dynamics of the pentagram maps

Theorem 13

The above integrable pentagram maps on twisted n-gons in \mathbb{CP}^d cannot be included into a Hamiltonian flow as its time-one map, at least for some values of n, m, and d.

This suggests the following

Definition 14

Suppose that (M, ω) is a 2*n*-dimensional symplectic manifold and $I_1, ..., I_n$ are *n* independent functions in involution. Let M_c be a (possibly disconnected) level set of these functions: $M_c = \{x \in M \mid I_j(x) = c_j, 1 \le j \le n\}$. A map $T : M \to M$ is called generalized integrable if

- it is symplectic, i.e., $T^*\omega = \omega$;
- ▶ it preserves the integrals of motion: $T^*I_j \equiv I_j$, $1 \le j \le n$;
- ► there exists a positive integer q ≥ 1 such that the map T^q leaves all connected components of level sets M_c invariant for all c = (c₁,..., c_n).

References

- B. Khesin, F. Soloviev, Non-integrability vs. integrability in pentagram maps, to appear in Journal of Geom. and Physics; arXiv:1404.6221.
- B. Khesin, F. Soloviev, Integrability of higher pentagram maps, Math. Ann., vol. 357 (2013), no.3, 1005–1047; arXiv:1204.0756.
- B. Khesin, F. Soloviev, The geometry of dented pentagram maps, to appear in JEMS (2013), 32pp.; arXiv:1308.5363.
- F. Soloviev, Integrability of the pentagram map, Duke Math. Journal, vol. 162 (2013), no.15, 2815–2853; arXiv:1106.3950.
- V. Ovsienko, R. Schwartz, S. Tabachnikov, *The pentagram map: a discrete integrable system*, Comm. Math. Phys., vol. 299 (2010), 409–446; arXiv:0810.5605
- R. Schwartz, The pentagram map, Experiment. Math., vol. 1 (1992), 71–81.