A quick introduction to Γ-convergence and its applications

Luigi Ambrosio

Scuola Normale Superiore, Pisa http://cvgmt.sns.it luigi.ambrosio@sns.it

- Basic abstract theory
- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by **F**-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

Basic abstract theory

- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by Γ-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

- Basic abstract theory
- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by **F**-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

- Basic abstract theory
- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by Γ-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

- Basic abstract theory
- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by **F**-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

- Basic abstract theory
- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by Γ-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

- Basic abstract theory
- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by Γ-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

- Basic abstract theory
- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by Γ-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

- Basic abstract theory
- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by Γ-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

- Basic abstract theory
- A model case with no derivatives
- Discrete to continuum and viceversa
- Elliptic operators in divergence form
- Expansions by **Γ**-convergence
- Phase transitions and image segmentation
- Problems with multiple scales
- Dimension reduction
- From convergence of minimizers to evolution problems

The theory of Γ-convergence was invented in the '70 by E.De Giorgi. Among the precursors of the theory, one should mention:

- the Mosco convergence (for convex functions and their duals);
- the G-convergence of Spagnolo for elliptic operators in divergence form;
- the epi-convergence, namely the Hausdorff convergence of the epigraphs.
- But, it is only with De Giorgi and with the examples worked out by his school that the theory reached a mature stage.

The theory of Γ-convergence was invented in the '70 by E.De Giorgi.

Among the precursors of the theory, one should mention:

- the Mosco convergence (for convex functions and their duals);
- the G-convergence of Spagnolo for elliptic operators in divergence form;
- the epi-convergence, namely the Hausdorff convergence of the epigraphs.
- But, it is only with De Giorgi and with the examples worked out by his school that the theory reached a mature stage.

The theory of Γ -convergence was invented in the '70 by E.De Giorgi. Among the precursors of the theory, one should mention:

• the Mosco convergence (for convex functions and their duals);

 the G-convergence of Spagnolo for elliptic operators in divergence form;

• the epi-convergence, namely the Hausdorff convergence of the epigraphs.

But, it is only with De Giorgi and with the examples worked out by his school that the theory reached a mature stage.

The theory of Γ -convergence was invented in the '70 by E.De Giorgi. Among the precursors of the theory, one should mention:

- the Mosco convergence (for convex functions and their duals);
- the *G*-convergence of Spagnolo for elliptic operators in divergence form;
- the epi-convergence, namely the Hausdorff convergence of the epigraphs.
- But, it is only with De Giorgi and with the examples worked out by his school that the theory reached a mature stage.

The theory of Γ -convergence was invented in the '70 by E.De Giorgi. Among the precursors of the theory, one should mention:

- the Mosco convergence (for convex functions and their duals);
- the *G*-convergence of Spagnolo for elliptic operators in divergence form;
- the epi-convergence, namely the Hausdorff convergence of the epigraphs.
- But, it is only with De Giorgi and with the examples worked out by his school that the theory reached a mature stage.

The theory of Γ -convergence was invented in the '70 by E.De Giorgi. Among the precursors of the theory, one should mention:

- the Mosco convergence (for convex functions and their duals);
- the *G*-convergence of Spagnolo for elliptic operators in divergence form;
- the epi-convergence, namely the Hausdorff convergence of the epigraphs.

But, it is only with De Giorgi and with the examples worked out by his school that the theory reached a mature stage.

The theory of Γ -convergence was invented in the '70 by E.De Giorgi. Among the precursors of the theory, one should mention:

- the Mosco convergence (for convex functions and their duals);
- the *G*-convergence of Spagnolo for elliptic operators in divergence form;
- the epi-convergence, namely the Hausdorff convergence of the epigraphs.
- But, it is only with De Giorgi and with the examples worked out by his school that the theory reached a mature stage.

References

G.ALBERTI, S.MÜLLER: A new approach to variational problems with multiple scales. Comm. Pure Appl. Math., **54** (2001), 764-825.

L.AMBROSIO, V.M.TORTORELLI: Approximation of functionals depending on jumps by elliptic functionals via Γ -convergence. Comm. Pure Appl. Math., **43** (1990), 999-1036.

L.AMBROSIO, N.GIGLI, G.SAVARÉ: Gradient flows in metric spaces and in the space of probability measures. Birkhäuser, 2005 (Second edition, 2008).

A.BRAIDES: Γ-convergence for beginners. Oxford University Press, 2002.

A.BRADES: Local minimization, variational evolution and Γ -convergence. Springer, 2014.

G.DAL MASO: An introduction to Γ -convergence. Birkhäuser, 1993.

E.DE GIORGI, T.FRANZONI: *Su un tipo di convergenza variazionale*. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., **58** (1975), 842-850.

G.FRIESECKE, R.D.JAMES, S.MÜLLER: *A hierarchy of plate models derived from nonlinear elasticity by* Γ*-convergence.* Archive for Rational Mechanics & Analysis, **180** (2006), 183-236. L.MODICA: *The gradient theory of phase transitions and the minimal interface criterion.* Arch. Rational Mech. Anal., **98** (1987), 123-142.

L.MODICA, S.MORTOLA: Un esempio di Γ-convergenza. Boll. Un. Mat. Ital., **14** (1977), 285-299. D.MUMFORD, J.SHAH: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., **17** (1989), 577-685.

E.SANDIER, S.SERFATY: Γ-convergence of gradient flows and applications to Gingzburg-Landau vortex dynamics. Comm. Pure Appl. Math., **57** (2004), 1627-1672.

S.SPAGNOLO: *Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.* Ann. Scuola Norm. Sup. Pisa, Cl. Sci., **22** (1968), 577-597.

Γ-convergence is a "variational" convergence, somehow the most the natural one to pass to the limit in variational problems.

More specifically we shall deal with the Γ^- convergence, the one designed to pass to the limit in *minimum* problems.

The most general definition of Γ^- upper and lower limits, for $F: I \times X \rightarrow [-\infty, +\infty]$:

$$\begin{cases} \Gamma^{-,+} \lim F(x) := \sup_{U \ni x} \inf_{i \in I} \sup_{j \ge i} \inf_{y \in U} F(j,y), \\ \Gamma^{-,-} \lim F(x) := \sup_{U \ni x} \sup_{i \in I} \inf_{j \ge i} \inf_{y \in U} F(j,y). \end{cases}$$

Γ-convergence is a "variational" convergence, somehow the most the natural one to pass to the limit in variational problems.

More specifically we shall deal with the Γ^- convergence, the one designed to pass to the limit in *minimum* problems.

The most general definition of Γ^- upper and lower limits, for $F: I \times X \rightarrow [-\infty, +\infty]$:

$$\begin{cases} \Gamma^{-,+} \lim F(x) := \sup_{U \ni x} \inf_{i \in I} \sup_{j \ge i} \inf_{y \in U} F(j, y), \\ \Gamma^{-,-} \lim F(x) := \sup_{U \ni x} \sup_{i \in I} \inf_{j \ge i} \inf_{y \in U} F(j, y). \end{cases}$$

Γ-convergence is a "variational" convergence, somehow the most the natural one to pass to the limit in variational problems.

More specifically we shall deal with the Γ^- convergence, the one designed to pass to the limit in *minimum* problems.

The most general definition of Γ^- upper and lower limits, for $F: I \times X \to [-\infty, +\infty]$:

$$\begin{cases} \Gamma^{-,+} \lim F(x) := \sup_{U \ni x} \inf_{i \in I} \sup_{j \ge i} \inf_{y \in U} F(j,y), \\ \Gamma^{-,-} \lim F(x) := \sup_{U \ni x} \sup_{i \in I} \inf_{j \ge i} \inf_{y \in U} F(j,y). \end{cases}$$

Γ-convergence is a "variational" convergence, somehow the most the natural one to pass to the limit in variational problems.

More specifically we shall deal with the Γ^- convergence, the one designed to pass to the limit in *minimum* problems.

The most general definition of Γ^- upper and lower limits, for $F: I \times X \to [-\infty, +\infty]$:

$$\begin{cases} \Gamma^{-,+} \lim F(x) := \sup_{U \ni x} \inf_{i \in I} \sup_{j \ge i} \inf_{y \in U} F(j,y), \\ \Gamma^{-,-} \lim F(x) := \sup_{U \ni x} \sup_{i \in I} \inf_{j \ge i} \inf_{y \in U} F(j,y). \end{cases}$$

Let (X, d) be a metric space, $F_n : X \to [-\infty, +\infty]$ lower semicontinuous. As in many other cases, to define convergence we pass through the intermediate notions of upper and lower limits:

$$\Gamma - \limsup_{n \to \infty} F_n(x) := \inf \left\{ \limsup_{n \to \infty} F_n(x_n) : x_n \to x \right\},$$

$$\Gamma - \liminf_{n \to \infty} F_n(x) := \inf \left\{ \liminf_{n \to \infty} F_n(x_n) : x_n \to x \right\}.$$

It is obvious that Γ – lim inf_n $F_n \leq \Gamma$ – lim sup_n F_n , and it is not too difficult to check that they are both lower semicontinuous. We say that $F_n \Gamma$ converge if

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le \Gamma - \liminf_{n \to \infty} F_n(x) \qquad \forall x \in X$$

and we denote the common value of the upper and lower Γ limits by $\Gamma - \lim_{n \to \infty} F_n$.

Sequential definition of Γ -convergence Let (X, d) be a metric space, $F_n : X \to [-\infty, +\infty]$ lower semicontinuous. As in many other cases, to define convergence we pass through the intermediate notions of upper and lower limits:

$$\Gamma - \limsup_{n \to \infty} F_n(x) := \inf \left\{ \limsup_{n \to \infty} F_n(x_n) : x_n \to x \right\},$$

$$\Gamma - \liminf_{n \to \infty} F_n(x) := \inf \left\{ \liminf_{n \to \infty} F_n(x_n) : x_n \to x \right\}.$$

It is obvious that $\Gamma - \liminf_n F_n \leq \Gamma - \limsup_n F_n$, and it is not too difficult to check that they are both lower semicontinuous. We say that $F_n \Gamma$ converge if

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le \Gamma - \liminf_{n \to \infty} F_n(x) \qquad \forall x \in X$$

and we denote the common value of the upper and lower Γ limits by $\Gamma - \lim_{n \to \infty} F_n$.

Let (X, d) be a metric space, $F_n : X \to [-\infty, +\infty]$ lower semicontinuous. As in many other cases, to define convergence we pass through the intermediate notions of upper and lower limits:

$$\Gamma - \limsup_{n \to \infty} F_n(x) := \inf \left\{ \limsup_{n \to \infty} F_n(x_n) : x_n \to x \right\},$$

$$\Gamma - \liminf_{n \to \infty} F_n(x) := \inf \left\{ \liminf_{n \to \infty} F_n(x_n) : x_n \to x \right\}.$$

It is obvious that $\Gamma - \liminf_n F_n \leq \Gamma - \limsup_n F_n$, and it is not too difficult to check that they are both lower semicontinuous. We say that $F_n \Gamma$ converge if

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le \Gamma - \liminf_{n \to \infty} F_n(x) \qquad \forall x \in X$$

and we denote the common value of the upper and lower Γ limits by $\Gamma - \lim_{n \to \infty} F_n$.

Luigi Ambrosio (SNS)

Let (X, d) be a metric space, $F_n : X \to [-\infty, +\infty]$ lower semicontinuous. As in many other cases, to define convergence we pass through the intermediate notions of upper and lower limits:

$$\Gamma - \limsup_{n \to \infty} F_n(x) := \inf \left\{ \limsup_{n \to \infty} F_n(x_n) : x_n \to x \right\},$$

$$\Gamma - \liminf_{n \to \infty} F_n(x) := \inf \left\{ \liminf_{n \to \infty} F_n(x_n) : x_n \to x \right\}.$$

It is obvious that $\Gamma - \liminf_n F_n \leq \Gamma - \limsup_n F_n$, and it is not too difficult to check that they are both lower semicontinuous. We say that $F_n \Gamma$ converge if

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le \Gamma - \liminf_{n \to \infty} F_n(x) \qquad \forall x \in X$$

and we denote the common value of the upper and lower Γ limits by $\Gamma - \lim_{n \to \infty} F_n$.

Let (X, d) be a metric space, $F_n : X \to [-\infty, +\infty]$ lower semicontinuous. As in many other cases, to define convergence we pass through the intermediate notions of upper and lower limits:

$$\Gamma - \limsup_{n \to \infty} F_n(x) := \inf \left\{ \limsup_{n \to \infty} F_n(x_n) : x_n \to x \right\},$$

$$\Gamma - \liminf_{n \to \infty} F_n(x) := \inf \left\{ \liminf_{n \to \infty} F_n(x_n) : x_n \to x \right\}.$$

It is obvious that $\Gamma - \liminf_n F_n \leq \Gamma - \limsup_n F_n$, and it is not too difficult to check that they are both lower semicontinuous. We say that $F_n \Gamma$ converge if

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le \Gamma - \liminf_{n \to \infty} F_n(x) \qquad \forall x \in X$$

and we denote the common value of the upper and lower Γ limits by

 $\Gamma - \lim_{n \to \infty} F_n.$

Luigi Ambrosio (SNS)

As soon as we have a guess F for the Γ -limit, we have to prove that

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le F(x)$$
 and $F(x) \le \Gamma - \liminf_{n \to \infty} F_n(x)$.

The first inequality means that we should be able to find $(x_n) \subset X$ convergent to x with $\limsup_n F_n(x_n) \leq F(x)$. Any sequence (x_n) with this property is called *recovery* sequence.

The second inequality means that we should be able to prove, for any $(x_n) \subset X$ convergent to x, the lower bound for the liminf, namely $\liminf_n F_n(x_n) \ge F(x)$.

Warning!! In general pointwise convergence has nothing to do with Γ -convergence, for instance $F_n(x) = \sin(nx) \Gamma$ -converge to -1. In this case

$$x_n = -\frac{\pi}{2n} + \frac{2[nx/2]\pi}{n} \qquad \text{is a re}$$

As soon as we have a guess F for the Γ -limit, we have to prove that

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le F(x)$$
 and $F(x) \le \Gamma - \liminf_{n \to \infty} F_n(x)$.

The first inequality means that we should be able to find $(x_n) \subset X$ convergent to x with $\limsup_n F_n(x_n) \leq F(x)$. Any sequence (x_n) with this property is called *recovery* sequence.

The second inequality means that we should be able to prove, for *any* $(x_n) \subset X$ convergent to x, the lower bound for the liminf, namely lim inf_n $F_n(x_n) \ge F(x)$.

Warning!! In general pointwise convergence has nothing to do with Γ -convergence, for instance $F_n(x) = \sin(nx) \Gamma$ -converge to -1. In this case

$$x_n = -\frac{\pi}{2n} + \frac{2[nx/2]\pi}{n} \qquad \text{is a red}$$

s a recovery sequence.

As soon as we have a guess F for the Γ -limit, we have to prove that

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le F(x)$$
 and $F(x) \le \Gamma - \liminf_{n \to \infty} F_n(x)$.

The first inequality means that we should be able to find $(x_n) \subset X$ convergent to x with $\limsup_n F_n(x_n) \leq F(x)$. Any sequence (x_n) with this property is called *recovery* sequence.

The second inequality means that we should be able to prove, for *any* $(x_n) \subset X$ convergent to x, the lower bound for the liminf, namely $\liminf_n F_n(x_n) \ge F(x)$.

Warning!! In general pointwise convergence has nothing to do with Γ -convergence, for instance $F_n(x) = \sin(nx) \Gamma$ -converge to -1. In this case

$$x_n = -\frac{\pi}{2n} + \frac{2[nx/2]\pi}{n}$$
 is

is a recovery sequence.

As soon as we have a guess F for the Γ -limit, we have to prove that

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le F(x)$$
 and $F(x) \le \Gamma - \liminf_{n \to \infty} F_n(x)$.

The first inequality means that we should be able to find $(x_n) \subset X$ convergent to x with $\limsup_n F_n(x_n) \leq F(x)$. Any sequence (x_n) with this property is called *recovery* sequence.

The second inequality means that we should be able to prove, for *any* $(x_n) \subset X$ convergent to x, the lower bound for the liminf, namely $\liminf_n F_n(x_n) \ge F(x)$.

Warning!! In general pointwise convergence has nothing to do with Γ -convergence, for instance $F_n(x) = \sin(nx) \Gamma$ -converge to -1. In this case

$$x_n = -\frac{\pi}{2n} + \frac{2[nx/2]\pi}{n} \qquad \text{is a reco}$$

As soon as we have a guess F for the Γ -limit, we have to prove that

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le F(x)$$
 and $F(x) \le \Gamma - \liminf_{n \to \infty} F_n(x)$.

The first inequality means that we should be able to find $(x_n) \subset X$ convergent to x with $\limsup_n F_n(x_n) \leq F(x)$. Any sequence (x_n) with this property is called *recovery* sequence.

The second inequality means that we should be able to prove, for any $(x_n) \subset X$ convergent to x, the lower bound for the liminf, namely $\liminf_n F_n(x_n) \ge F(x)$.

Warning!! In general pointwise convergence has nothing to do with Γ -convergence, for instance $F_n(x) = \sin(nx) \Gamma$ -converge to -1. In this case

$$x_n = -\frac{\pi}{2n} + \frac{2[nx/2]\pi}{n}$$

is a recovery sequence.

As soon as we have a guess F for the Γ -limit, we have to prove that

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le F(x)$$
 and $F(x) \le \Gamma - \liminf_{n \to \infty} F_n(x)$.

The first inequality means that we should be able to find $(x_n) \subset X$ convergent to x with $\limsup_n F_n(x_n) \leq F(x)$. Any sequence (x_n) with this property is called *recovery* sequence.

The second inequality means that we should be able to prove, for any $(x_n) \subset X$ convergent to x, the lower bound for the liminf, namely $\liminf_n F_n(x_n) \ge F(x)$.

Warning!! In general pointwise convergence has nothing to do with Γ -convergence, for instance $F_n(x) = \sin(nx) \Gamma$ -converge to -1. In this case

$$x_n = -\frac{\pi}{2n} + \frac{2[nx/2]\pi}{n}$$

is a recovery sequence.

As soon as we have a guess F for the Γ -limit, we have to prove that

$$\Gamma - \limsup_{n \to \infty} F_n(x) \le F(x)$$
 and $F(x) \le \Gamma - \liminf_{n \to \infty} F_n(x)$.

The first inequality means that we should be able to find $(x_n) \subset X$ convergent to x with $\limsup_n F_n(x_n) \leq F(x)$. Any sequence (x_n) with this property is called *recovery* sequence.

The second inequality means that we should be able to prove, for any $(x_n) \subset X$ convergent to x, the lower bound for the liminf, namely $\liminf_n F_n(x_n) \ge F(x)$.

Warning!! In general pointwise convergence has nothing to do with Γ -convergence, for instance $F_n(x) = \sin(nx) \Gamma$ -converge to -1. In this case

$$x_n = -\frac{\pi}{2n} + \frac{2[nx/2]\pi}{n}$$
 is a recovery

sequence.

The first result clarifies the meaning of variational convergence: limits of (asymptotic) minimizers are minimizers and we have convergence of minimum values.

Theorem 1. If $\Gamma - \lim_{n \to \infty} F_n = F$ and $(x_n) \subset X$ is asymptotically minimizing for F_n , i.e.

$$F_n(x_n) \leq \inf_X F_n + \epsilon_n$$

with $\epsilon_n \rightarrow 0$, then any limit point x of (x_n) minimizes F. In addition, under the equi-coercitivity assumption

 $\inf_X F_n = \inf_K F_n \qquad \text{for some compact set } K \subset X \text{ independent of } n,$

one has that F_n attain their minimum value, and

$$\lim_{n\to\infty}\min_X F_n = \min_X F.$$

The first result clarifies the meaning of variational convergence: limits of (asymptotic) minimizers are minimizers and we have convergence of minimum values.

Theorem 1. If $\Gamma - \lim_{n \to \infty} F_n = F$ and $(x_n) \subset X$ is asymptotically minimizing for F_n , i.e.

$$F_n(x_n) \leq \inf_X F_n + \epsilon_n$$

with $\epsilon_n \rightarrow 0$, then any limit point x of (x_n) minimizes F. In addition, under the equi-coercitivity assumption

 $\inf_X F_n = \inf_K F_n \qquad \text{for some compact set } K \subset X \text{ independent of } n,$

one has that F_n attain their minimum value, and

$$\lim_{n\to\infty}\min_X F_n = \min_X F.$$

The first result clarifies the meaning of variational convergence: limits of (asymptotic) minimizers are minimizers and we have convergence of minimum values.

Theorem 1. If $\Gamma - \lim_{n \to \infty} F_n = F$ and $(x_n) \subset X$ is asymptotically minimizing for F_n , i.e.

$$F_n(x_n) \leq \inf_X F_n + \epsilon_n$$

with $\epsilon_n \rightarrow 0$, then any limit point x of (x_n) minimizes F. In addition, under the equi-coercitivity assumption

 $\inf_X F_n = \inf_K F_n \qquad \text{for some compact set } K \subset X \text{ independent of } n,$

one has that F_n attain their minimum value, and

$$\lim_{n\to\infty}\min_X F_n=\min_X F.$$

Proof of the first part. Let $x = \lim_{k \to \infty} x_{n(k)}$ be a limit point of (x_n) . Obviously we still have $F = \Gamma - \lim_{k \to \infty} F_{n(k)}$, so that

 $\inf_X F \leq F(x) \leq \liminf_{k \to \infty} F_{n(k)}(x_{n(k)}) = \liminf_{k \to \infty} \inf_X F_{n(k)}.$

On the other hand, if $(y_{n(k)})$ is a recovery sequence relative to y, then

 $\limsup_{k\to\infty} \inf_X F_{n(k)} \le \limsup_{k\to\infty} F_{n(k)}(y_{n(k)}) \le F(y).$

Proof of the first part. Let $x = \lim_{k \to \infty} x_{n(k)}$ be a limit point of (x_n) . Obviously we still have $F = \Gamma - \lim_{k \to \infty} F_{n(k)}$, so that

 $\inf_X F \leq F(x) \leq \liminf_{k \to \infty} F_{n(k)}(x_{n(k)}) = \liminf_{k \to \infty} \inf_X F_{n(k)}.$

On the other hand, if $(y_{n(k)})$ is a recovery sequence relative to y, then

$$\limsup_{k\to\infty} \inf_X F_{n(k)} \leq \limsup_{k\to\infty} F_{n(k)}(y_{n(k)}) \leq F(y).$$

Proof of the first part. Let $x = \lim_{k \to \infty} x_{n(k)}$ be a limit point of (x_n) . Obviously we still have $F = \Gamma - \lim_{k \to \infty} F_{n(k)}$, so that

$$\inf_{X} F \leq F(x) \leq \liminf_{k \to \infty} F_{n(k)}(x_{n(k)}) = \liminf_{k \to \infty} \inf_{X} F_{n(k)}.$$

On the other hand, if $(y_{n(k)})$ is a recovery sequence relative to y, then

$$\limsup_{k\to\infty} \inf_X F_{n(k)} \leq \limsup_{k\to\infty} F_{n(k)}(y_{n(k)}) \leq F(y).$$

Proof of the first part. Let $x = \lim_{k \to \infty} x_{n(k)}$ be a limit point of (x_n) . Obviously we still have $F = \Gamma - \lim_{k \to \infty} F_{n(k)}$, so that

$$\inf_{X} F \leq F(x) \leq \liminf_{k \to \infty} F_{n(k)}(x_{n(k)}) = \liminf_{k \to \infty} \inf_{X} F_{n(k)}.$$

On the other hand, if $(y_{n(k)})$ is a recovery sequence relative to y, then

$$\limsup_{k\to\infty}\inf_X F_{n(k)} \leq \limsup_{k\to\infty} F_{n(k)}(y_{n(k)}) \leq F(y).$$

Proof of the first part. Let $x = \lim_{k \to \infty} x_{n(k)}$ be a limit point of (x_n) . Obviously we still have $F = \Gamma - \lim_{k \to \infty} F_{n(k)}$, so that

$$\inf_{X} F \leq F(x) \leq \liminf_{k \to \infty} F_{n(k)}(x_{n(k)}) = \liminf_{k \to \infty} \inf_{X} F_{n(k)}.$$

On the other hand, if $(y_{n(k)})$ is a recovery sequence relative to y, then

$$\limsup_{k\to\infty}\inf_X F_{n(k)} \leq \limsup_{k\to\infty} F_{n(k)}(y_{n(k)}) \leq F(y).$$

Proof of the first part. Let $x = \lim_{k \to \infty} x_{n(k)}$ be a limit point of (x_n) . Obviously we still have $F = \Gamma - \lim_{k \to \infty} F_{n(k)}$, so that

$$\inf_{X} F \leq F(x) \leq \liminf_{k \to \infty} F_{n(k)}(x_{n(k)}) = \liminf_{k \to \infty} \inf_{X} F_{n(k)}.$$

On the other hand, if $(y_{n(k)})$ is a recovery sequence relative to y, then

$$\limsup_{k\to\infty}\inf_X F_{n(k)} \leq \limsup_{k\to\infty} F_{n(k)}(y_{n(k)}) \leq F(y).$$

The two basic theorems of Γ -convergence Theorem 2. If (X, d) is separable, then Γ -convergence is sequentially compact.

Proof. Let $(U_i)_{i \in \mathbb{N}}$ be a countable basis for the open sets of *X*, stable under finite intersections. If F_n are given, we may extract by a diagonal argument a subsequence n(k) such that

 $\ell_i := \lim_{k \to \infty} \inf_{U_i} F_{n(k)}$ exists for all $i \in \mathbb{N}$.

Then, define

$$F(x) := \sup_{U_i \ni x} \ell_i, \qquad x \in X.$$

The Γ-liminf inequality follows by

 $\liminf_{k\to\infty} F_{n(k)}(x_k) \ge \liminf_{k\to\infty} \inf_{U_i} F_{n(k)} = \ell_i \quad \text{for all } i \text{ s.t. } x \in U_i.$

The proof of Γ-limsup inequality is left as an exercise.

Theorem 2. If (X, d) is separable, then Γ -convergence is sequentially compact.

Proof. Let $(U_i)_{i \in \mathbb{N}}$ be a countable basis for the open sets of *X*, stable under finite intersections. If F_n are given, we may extract by a diagonal argument a subsequence n(k) such that

 $\ell_i := \lim_{k \to \infty} \inf_{U_i} F_{n(k)}$ exists for all $i \in \mathbb{N}$.

Then, define

$$F(x) := \sup_{U_i \ni x} \ell_i, \qquad x \in X.$$

The **F**-liminf inequality follows by

 $\liminf_{k\to\infty} F_{n(k)}(x_k) \ge \liminf_{k\to\infty} \inf_{U_i} F_{n(k)} = \ell_i \quad \text{for all } i \text{ s.t. } x \in U_i.$

The proof of **F**-limsup inequality is left as an exercise.

Theorem 2. If (X, d) is separable, then Γ -convergence is sequentially compact.

Proof. Let $(U_i)_{i \in \mathbb{N}}$ be a countable basis for the open sets of *X*, stable under finite intersections. If F_n are given, we may extract by a diagonal argument a subsequence n(k) such that

$$\ell_i := \lim_{k \to \infty} \inf_{U_i} F_{n(k)}$$
 exists for all $i \in \mathbb{N}$.

Then, define

$$F(x) := \sup_{U_i \ni x} \ell_i, \qquad x \in X.$$

The Γ-liminf inequality follows by

 $\liminf_{k\to\infty} F_{n(k)}(x_k) \geq \liminf_{k\to\infty} \inf_{U_i} F_{n(k)} = \ell_i \quad \text{for all } i \text{ s.t. } x \in U_i.$

The proof of Γ -limsup inequality is left as an exercise.

Theorem 2. If (X, d) is separable, then Γ -convergence is sequentially compact.

Proof. Let $(U_i)_{i \in \mathbb{N}}$ be a countable basis for the open sets of *X*, stable under finite intersections. If F_n are given, we may extract by a diagonal argument a subsequence n(k) such that

$$\ell_i := \lim_{k \to \infty} \inf_{U_i} F_{n(k)}$$
 exists for all $i \in \mathbb{N}$.

Then, define

$$F(x) := \sup_{U_i \ni x} \ell_i, \qquad x \in X.$$

The Γ-liminf inequality follows by

 $\liminf_{k\to\infty} F_{n(k)}(x_k) \geq \liminf_{k\to\infty} \inf_{U_i} F_{n(k)} = \ell_i \quad \text{for all } i \text{ s.t. } x \in U_i.$

The proof of Γ-limsup inequality is left as an exercise

Theorem 2. If (X, d) is separable, then Γ -convergence is sequentially compact.

Proof. Let $(U_i)_{i \in \mathbb{N}}$ be a countable basis for the open sets of *X*, stable under finite intersections. If F_n are given, we may extract by a diagonal argument a subsequence n(k) such that

$$\ell_i := \lim_{k \to \infty} \inf_{U_i} F_{n(k)}$$
 exists for all $i \in \mathbb{N}$.

Then, define

$$F(x) := \sup_{U_i \ni x} \ell_i, \qquad x \in X.$$

The Γ-liminf inequality follows by

$$\liminf_{k\to\infty} F_{n(k)}(x_k) \geq \liminf_{k\to\infty} \inf_{U_i} F_{n(k)} = \ell_i \quad \text{for all } i \text{ s.t. } x \in U_i.$$

SCUOLA NORMALE SUPERIORI

Γhe proof of Γ-limsup inequality is left as an exercise

Luigi Ambrosio (SNS)

Theorem 2. If (X, d) is separable, then Γ -convergence is sequentially compact.

Proof. Let $(U_i)_{i \in \mathbb{N}}$ be a countable basis for the open sets of *X*, stable under finite intersections. If F_n are given, we may extract by a diagonal argument a subsequence n(k) such that

$$\ell_i := \lim_{k \to \infty} \inf_{U_i} F_{n(k)}$$
 exists for all $i \in \mathbb{N}$.

Then, define

$$F(x) := \sup_{U_i \ni x} \ell_i, \qquad x \in X.$$

The Γ-liminf inequality follows by

$$\liminf_{k\to\infty} F_{n(k)}(x_k) \geq \liminf_{k\to\infty} \inf_{U_i} F_{n(k)} = \ell_i \quad \text{for all } i \text{ s.t. } x \in U_i.$$

The proof of Γ -limsup inequality is left as an exercise.

Luigi Ambrosio (SNS)

Other easy properties

• When the convergence is monotone, i.e. $F_n \leq F_{n+1}$, the monotone (or pointwise) limit is $F(x) = \sup_n F_n(x)$ (in this case the recovery sequence is constant). This happens, for instance for the L^p norms $(\int |f|^p d\mu)^{1/p}$ in a probability space, whose limit and Γ -limit as $p \uparrow \infty$ is the L^∞ norm.

• Γ-convergence is invariant under additive continuous perturbations and left compositions with non-decreasing maps:

$$F = \Gamma - \lim_{n \to \infty} F_n \implies F + g = \Gamma - \lim_{n \to \infty} (F_n + g) \quad \forall g \in C(X, \mathbb{R}),$$

$$F = \Gamma - \lim_{n \to \infty} F_n \implies \phi \circ F = \Gamma - \lim_{n \to \infty} \phi \circ F_n \quad \phi \text{ non-decreasing.}$$

Other easy properties

• When the convergence is monotone, i.e. $F_n \leq F_{n+1}$, the monotone (or pointwise) limit is $F(x) = \sup_n F_n(x)$ (in this case the recovery sequence is constant). This happens, for instance for the L^p norms $(\int |f|^p d\mu)^{1/p}$ in a probability space, whose limit and Γ -limit as $p \uparrow \infty$ is the L^{∞} norm.

• Γ-convergence is invariant under additive continuous perturbations and left compositions with non-decreasing maps:

$$F = \Gamma - \lim_{n \to \infty} F_n \implies F + g = \Gamma - \lim_{n \to \infty} (F_n + g) \ \forall g \in C(X, \mathbb{R}),$$

 $F = \Gamma - \lim_{n \to \infty} F_n \implies \phi \circ F = \Gamma - \lim_{n \to \infty} \phi \circ F_n \quad \phi \text{ non-decreasing.}$

Other easy properties

• When the convergence is monotone, i.e. $F_n \leq F_{n+1}$, the monotone (or pointwise) limit is $F(x) = \sup_n F_n(x)$ (in this case the recovery sequence is constant). This happens, for instance for the L^p norms $(\int |f|^p d\mu)^{1/p}$ in a probability space, whose limit and Γ -limit as $p \uparrow \infty$ is the L^{∞} norm.

 Γ-convergence is invariant under additive continuous perturbations and left compositions with non-decreasing maps:

$$F = \Gamma - \lim_{n \to \infty} F_n \implies F + g = \Gamma - \lim_{n \to \infty} (F_n + g) \ \forall g \in C(X, \mathbb{R}),$$

 $F = \Gamma - \lim_{n \to \infty} F_n \implies \phi \circ F = \Gamma - \lim_{n \to \infty} \phi \circ F_n \phi$ non-decreasing.

