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Introduction

The theory of Γ-convergence was invented in the ’70 by E.De Giorgi.
Among the precursors of the theory, one should mention:

• the Mosco convergence (for convex functions and their duals);
• the G-convergence of Spagnolo for elliptic operators in divergence
form;
• the epi-convergence, namely the Hausdorff convergence of the
epigraphs.

But, it is only with De Giorgi and with the examples worked out by his
school that the theory reached a mature stage.
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Introduction

Γ-convergence is a “variational” convergence, somehow the most the
natural one to pass to the limit in variational problems.
More specifically we shall deal with the Γ− convergence, the one
designed to pass to the limit in minimum problems.
The most general definition of Γ− upper and lower limits, for
F : I × X → [−∞,+∞]:

Γ−,+ lim F (x) := sup
U3x

inf
i∈I

sup
j≥i

inf
y∈U

F (j , y),

Γ−,− lim F (x) := sup
U3x

sup
i∈I

inf
j≥i

inf
y∈U

F (j , y).

From now on, our index set I will be N and we work in a metric space
(X ,d), dropping the − from Γ−.

Luigi Ambrosio (SNS) Toronto, October 2014 5 / 11



Introduction

Γ-convergence is a “variational” convergence, somehow the most the
natural one to pass to the limit in variational problems.
More specifically we shall deal with the Γ− convergence, the one
designed to pass to the limit in minimum problems.
The most general definition of Γ− upper and lower limits, for
F : I × X → [−∞,+∞]:

Γ−,+ lim F (x) := sup
U3x

inf
i∈I

sup
j≥i

inf
y∈U

F (j , y),

Γ−,− lim F (x) := sup
U3x

sup
i∈I

inf
j≥i

inf
y∈U

F (j , y).

From now on, our index set I will be N and we work in a metric space
(X ,d), dropping the − from Γ−.

Luigi Ambrosio (SNS) Toronto, October 2014 5 / 11



Introduction

Γ-convergence is a “variational” convergence, somehow the most the
natural one to pass to the limit in variational problems.
More specifically we shall deal with the Γ− convergence, the one
designed to pass to the limit in minimum problems.
The most general definition of Γ− upper and lower limits, for
F : I × X → [−∞,+∞]:

Γ−,+ lim F (x) := sup
U3x

inf
i∈I

sup
j≥i

inf
y∈U

F (j , y),

Γ−,− lim F (x) := sup
U3x

sup
i∈I

inf
j≥i

inf
y∈U

F (j , y).

From now on, our index set I will be N and we work in a metric space
(X ,d), dropping the − from Γ−.

Luigi Ambrosio (SNS) Toronto, October 2014 5 / 11



Introduction

Γ-convergence is a “variational” convergence, somehow the most the
natural one to pass to the limit in variational problems.
More specifically we shall deal with the Γ− convergence, the one
designed to pass to the limit in minimum problems.
The most general definition of Γ− upper and lower limits, for
F : I × X → [−∞,+∞]:

Γ−,+ lim F (x) := sup
U3x

inf
i∈I

sup
j≥i

inf
y∈U

F (j , y),

Γ−,− lim F (x) := sup
U3x

sup
i∈I

inf
j≥i

inf
y∈U

F (j , y).

From now on, our index set I will be N and we work in a metric space
(X ,d), dropping the − from Γ−.

Luigi Ambrosio (SNS) Toronto, October 2014 5 / 11



Sequential definition of Γ-convergence
Let (X ,d) be a metric space, Fn : X → [−∞,+∞] lower semicontinu-
ous. As in many other cases, to define convergence we pass through
the intermediate notions of upper and lower limits:

Γ− lim sup
n→∞

Fn(x) := inf
{

lim sup
n→∞

Fn(xn) : xn → x
}
,

Γ− lim inf
n→∞

Fn(x) := inf
{

lim inf
n→∞

Fn(xn) : xn → x
}
.

It is obvious that Γ − lim infn Fn ≤ Γ − lim supn Fn, and it is not too
difficult to check that they are both lower semicontinuous. We say that
Fn Γ converge if

Γ− lim sup
n→∞

Fn(x) ≤ Γ− lim inf
n→∞

Fn(x) ∀x ∈ X

and we denote the common value of the upper and lower Γ limits by
Γ− lim

n→∞
Fn.
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How one proves Γ-convergence
As soon as we have a guess F for the Γ-limit, we have to prove that

Γ− lim sup
n→∞

Fn(x) ≤ F (x) and F (x) ≤ Γ− lim inf
n→∞

Fn(x).

The first inequality means that we should be able to find (xn) ⊂ X
convergent to x with lim supn Fn(xn) ≤ F (x). Any sequence (xn) with
this property is called recovery sequence.
The second inequality means that we should be able to prove, for
any (xn) ⊂ X convergent to x , the lower bound for the liminf, namely
lim infn Fn(xn) ≥ F (x).
Warning!! In general pointwise convergence has nothing to do with
Γ-convergence, for instance Fn(x) = sin(nx) Γ-converge to −1.
In this case

xn = − π

2n
+

2[nx/2]π

n
is a recovery sequence.
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The two basic theorems of Γ-convergence
The first result clarifies the meaning of variational convergence: limits
of (asymptotic) minimizers are minimizers and we have convergence of
minimum values.

Theorem 1. If Γ − lim
n→∞

Fn = F and (xn) ⊂ X is asymptotically
minimizing for Fn, i.e.

Fn(xn) ≤ inf
X

Fn + εn

with εn → 0, then any limit point x of (xn) minimizes F. In addition,
under the equi-coercitivity assumption

inf
X

Fn = inf
K

Fn for some compact set K ⊂ X independent of n,

one has that Fn attain their minimum value, and

lim
n→∞

min
X

Fn = min
X

F .
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The two basic theorems of Γ-convergence

Proof of the first part. Let x = lim
k→∞

xn(k) be a limit point of (xn).

Obviously we still have F = Γ− lim
k→∞

Fn(k), so that

inf
X

F ≤ F (x) ≤ lim inf
k→∞

Fn(k)(xn(k)) = lim inf
k→∞

inf
X

Fn(k).

On the other hand, if (yn(k)) is a recovery sequence relative to y , then

lim sup
k→∞

inf
X

Fn(k) ≤ lim sup
k→∞

Fn(k)(yn(k)) ≤ F (y).

By taking the infimum w.r.t. y we can obtain infX F in the right
hand side. Now, combining these two inequalities we obtain that x
minimizes F and that infX Fn(k) converge to minX F .
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The two basic theorems of Γ-convergence
Theorem 2. If (X ,d) is separable, then Γ-convergence is sequentially
compact.

Proof. Let (Ui)i∈N be a countable basis for the open sets of X , stable
under finite intersections. If Fn are given, we may extract by a diagonal
argument a subsequence n(k) such that

`i := lim
k→∞

inf
Ui

Fn(k) exists for all i ∈ N.

Then, define
F (x) := sup

Ui3x
`i , x ∈ X .

The Γ-liminf inequality follows by

lim inf
k→∞

Fn(k)(xk ) ≥ lim inf
k→∞

inf
Ui

Fn(k) = `i for all i s.t. x ∈ Ui .

The proof of Γ-limsup inequality is left as an exercise.
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Other easy properties

• When the convergence is monotone, i.e. Fn ≤ Fn+1, the monotone
(or pointwise) limit is F (x) = supn Fn(x) (in this case the recovery
sequence is constant). This happens, for instance for the Lp norms(∫
|f |p dµ

)1/p in a probability space, whose limit and Γ-limit as p ↑ ∞ is
the L∞ norm.

• Γ-convergence is invariant under additive continuous perturbations
and left compositions with non-decreasing maps:

F = Γ− lim
n→∞

Fn =⇒ F + g = Γ− lim
n→∞

(Fn + g) ∀g ∈ C(X ,R),

F = Γ− lim
n→∞

Fn =⇒ φ◦F = Γ− lim
n→∞

φ◦Fn φ non-decreasing.
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