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Density functional theory
Dirac 1929 Chemically specific behaviour of atoms and molecules
captured, ”in principle”, by quantum mechanics.
Emission/absorption spectra, binding energies, equilibrium geometries, interatomic forces,...

Catch Curse of dimension. Schrödinger eq. is for N- electron
wavefunction Ψ : (R3 × Z2)NtoC. H2O, N=10, PDE in R30,
10 gridpts each direction, 1030 gridpts.

Hohenberg, Kohn, Sham 1964/65 Replace Schröd.eq. by closed
eq./var.principle for the one-point (or marginal) density ρ : R3 → R,

ρ(x1) = N
∑

s1,..,sN∈Z2

∫
R3(N−1) |Ψ(x1, s1, .., xN , sN)|2dx2 · · · dxN .

– Nobel Prize 1998 for W.Kohn
– Routinely used in phys., chem., materials, molecular biology; huge non-math.literature
– (Ex.: Momany, Carbohyd. Res. 2005)

– Theory: ∃ ’exact’ fctnal; practice: clever semi-empirical fctnals: LDA, B3LYP, PBE,...
– accuracy not so high; some failures; fctnals not systematically derivable/improvable

This talk Behaviour of ’exact’ functional in scaling limits
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Example: Original semi-empirical Kohn-Sham functional

I N-electron molecule, nuclear charges Z1, ..,ZM > 0, nuclear
positions R1, ..,RM ∈ R3

I potential exerted by nuclei on electrons:

v(x) = −
M∑
α=1

Zα|x − Rα|−1

I Ground state energy:

EKS
0 = min

ρ
( TKS [ρ] +

1

2

∫
R6

ρ(x)ρ(y)

|x − y |
dx dy

− 3

4

(
3

π

) 1
3
∫
R3

ρ4/3 +

∫
v ρ )

where

TKS [ρ] = min{
N∑
i=1

1

2

∫
R3
|∇ψ|2 :

∑
i

|ψi (x)|2 = ρ(x), 〈ψi , ψj 〉 = δij , ψi ∈ H1(R3;C2)}

Where do all these terms come from ...(???)...
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’Exact’ DFT according to Levy/Lieb

I Start from quantum Hamiltonian of N-electron system:

He` =
N∑
i=1

(−1

2
∆xi ) +

∑
1≤i<j≤N

1

|xi − xj |
+

N∑
i=1

v(xi )

(typically, v(xi ) = −
∑M

α=1
Zα

|xi−Rα| potential exerted onto

electrons by atomic nuclei)

I Ground state energy:

E0 = min
Ψ∈AN

〈
Ψ,He`Ψ

〉
L2

where

AN = {Ψ ∈ H1((R3×Z2)N ;C) : Ψ antisymmetric, ||Ψ||L2 = 1}
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’Exact’ DFT according to Levy/Lieb, ctd.

Hohenberg-Kohn-Theorem (1964) For each fixed N, there exists a
universal (i.e., molecule-independent) functional FHK of the single-particle
density ρ such that for any external potential v , the exact QM ground
state en. satisfies

E0 = min
ρ∈RN

(
FHK [ρ] +

∫
R3

v(x)ρ(x) dx
)
,

where RN = {ρ ∈ L1(R3) : ρ ≥ 0,
∫
ρ = N,

√
ρ ∈ H1(R3)}.

Proof 1. The non-universal part of the energy only depends on ρΨ:

〈Ψ,
∑
i

v(xi )Ψ〉 =

∫ ∑
i

v(xi )|Ψ(x1, .., xN)|2 =

∫
R3

v(x) ρΨ(x) dx .

2. Partition the min over Ψ into a double min, first over Ψ subject to fixed

ρ, then over ρ: letting Huniv
e` := −~2

2 ∆ +
∑

i<j
1

|xi−xj | ,

E0 = inf
Ψ

(
〈Ψ,Huniv

e` Ψ〉+

∫
v(r) ρΨ(r) dr

)
= inf

ρ
inf

Ψ7→ρ

(
〈Ψ,Huniv

e` Ψ〉
)

︸ ︷︷ ︸
=:FHK [ρ]

+

∫
v(r) ρ(r) dr .
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Universal map ρ→ ρ2 from densities to pair densities
Corollary of the HK theorem There exists a universal (i.e.,
molecule-independent) map from single-particle densities ρ(x1) to
pair densities ρ2(x1, x2) which gives the exact pair density of any
N-electron molecular ground state Ψ(x1, s1, .., xN , sN) in terms of its
single-particle density.

Proof Ψ∗ := minimizer of 〈Ψ,Huniv
e` Ψ〉 subject to marginal

constraint Ψ 7→ ρ

ρ2 := pair density of minimizer, i.e.
ρ2(x1, x2) =

∑
s1,..,sN

∫
|Ψ∗(x1, s1, .., xN , sN)|2dx3..dxN

(Analogously,
∫
...dxk+1..dxN gives universal k-pt. density)

ρ2 may be nonunique since GS may be degenerate. Hence map multi-valued.

Map highly nontrivial and not comp’ly feasible – still uses high-dim. wavefunctions.

Pair density gives exact interaction energy
〈Ψ∗,

∑
i<j

1
|xi−xj |

Ψ∗〉 =
∫
R6

ρ2(x,y)
|x−y| dx dy

Comp’ly feasible interaction en. fctnals ≈ approximate the map
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Thinking about the pair density in an elementary way

Non-interacting particles Repulsive interactions
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What does the map ρ 7→ ρ2 look like?
Simulations by Huajie Chen/G.F., to appear

Ex.: 1D, N electrons, ρ simple ’lump’, scaling parameter α > 0
ρ(x) = α N

2L(1 + cos(α π
2Lx)), x ∈ [−αL, αL]

N=2

N=3

N=4
α = 100 α = 1 α = 0.1
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Density scaling

For any given density ρ ∈ L1(Rd), let ρα(x) := αdρ(αx), α > 0

FHK [ρ] = αFHK
α [ρ] (simple computation)

FHK
α [ρ] = min

Ψ∈H1,Ψ7→ρ
〈Ψ, (−α

2 ∆ +
∑

i<j
1

|xi−xj |)Ψ〉L2

For dilute systems (α << 1), ’semiclassical’ behaviour
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Scaling limit 1: α→ 0
In limit α→ 0, exact DFT turns into optimal transport.

Theorem (Cotar/GF/Klüppelberg, CPAM 2013)

FHK [ρ] = min
Ψ∈H1,Ψ 7→ρ

〈Ψ, (−α
2

∆ +
∑
i<j

1

|xi − xj |
)Ψ〉L2


→
α→0 min

γ∈PN ,γ 7→ρ

∫
R3N

∑
1≤i<j≤N

1

|xi − xj |
dγ(x1, .., xN) =: FOT [ρ]

where PN is the set of symmetric probability measures on R3N .

I Limit problem (up to passage to prob.measures) introduced in
two remarkable papers in physics lit., without being aware this
is an OT pb. Seidl’99, Seidl/Gori-Giorgi/Savin’07

I Difficulty (regularity issue): Any Ψ with |Ψ|2 = γ=optimal plan
of OT pb. has Ψ 6∈ H1, Ψ 6∈ L2, T [Ψ] = +∞, and hence
cannot be used as trial state in var. principle for FHK .
Smoothing the optimal OT plan doesn’t work either, since this
destroys the marginal constraint.
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More on rigorous passage DFT to OT

Non-DFT counterex.
(Cotar/GF/Kl. 2014, inspired by Mania 1934, Lavrentiev 1927)

J[u] =
∫ 1

0 (u(x)3 − x)2u′(x)6dx , u(0) = 0, u(1) = 1

limα→0 minu(α2
∫ 1

0 (u′)2 + J[u]) ≥ 1
2 ( 7

8 )2( 3
10 )5

minu J[u] = 0 (minimizer: u = x1/3) ”Lavrentiev gap”

Similarity to semiclassical limit of HK functional:
minimizers of the limit problem have infinite kinetic energy, and are
hence not admissible trial functions when the semiclassical
parameter is nonzero.

Proof that the DFT problem does not have a ”Lavrentiev gap”:
Take a minimizer of the limit pb. Smooth it by convolution with a
Gaussian. This has finite kinetic energy, and nearly the same
interaction energy, but the wrong one-body density (the latter is
also smoothed). Now construct a nonlinear projection which
restores the correct one-body density without loss of regularity.
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Behaviour of limit pb

Multi-marginal OT problem, all marginals equal, cost decreases with
distance

minγ∈PN ,γ 7→ρ
∫
RNd

∑
1≤i<j≤N

1
|xi−xj |dγ(x1, .., xN)

I For N=2, unique minimizer, of ’Monge’ form
γ(x , y) = ρ(x)δT (x)(y) (Cotar, G.F., Klueppelberg, arXiv 2011,
CPAM 2013, adapting Gangbo-McCann; different proof via
Kantorovich duality: Buttazzo, DePascale, Gori-Giorgi 2012)

I For N¿2, non-Monge minimizers possible (B.Pass 2013)

I For N¿2, existence of Monge minimizers open

I For N arbitrary but d=1, unique symmetric minimizer, of
symmetrized Monge form (Colombo, DePascale, DiMarino,
preprint 2013)

γ(x1, .., xN) = symmetrization of ρ(x1)δT2(x1)(x2) · · · δTN(x1)(xN)
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Comparison exact DFT – optimal transport
Huajie Chen, G.F., on arXiv soon

N=2

N=3

N=4
α = 100 α = 1 α = 0.1 Opt.Tr.
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Scaling limit 2: α→∞
Conjecture (highly non-rigorous):
The limiting kinetic energy functional is the Kohn-Sham kinetic
energy functional. The limiting pair density always is the pair
density of some Slater determinant. The Slater determinant consists
of lowest eigenstates of the one-body operator whose potential is
the functional derivative of δFHK [ρ]/δρ. Warning: rigorously, FHK

not even known to be continuous!

Theorem (Huajie Chen, G.F., soon on arXiv) For the homogeneous
electron gas with periodic bc’s in one dimension, the limit of the
pair density as α→∞ is unique, and given, say for N divisible by 4,
by that of the (spin-polarized) Slater determinant

| − (
N

4
− 1) ↑,−(

N

4
− 1) ↓, ..., (N

4
− 1) ↑, (N

4
− 1) ↓,−N

4
↑, N

4
↑〉,

where |k〉(x) := 1√
2L
e ik(π/L)x .

Optically indistinguishable from exact ρ2 for α = 100.
28



Scaling limit 3: α→ 0, then N →∞

Minimize

C∞[γ] := lim
N→∞

(
N

2

)−1 ∑
1≤i<j≤N

c(xi , xj)dγ(x1, x2, ...) (cost per particle pair)

over prob.measures γ ∈ Psym((Rd)∞) s/to γ 7→ µ ∈ P(Rd).

Questions: Behaviour of C∞. Relation to CN .

Theorem 1 (Cotar, G.F., Pass, arXiv 2013): Suppose
c(x , y) = `(x − y), ` has positive Fourier trf. Then

γopt = µ⊗ µ⊗ · · ·

is the unique minimizer.
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Proof that infinite-body minimizer = indep.meas. (strategy)

Consider arbitrary γ ∈ Psym((Rd)∞), γ 7→ µ2 7→ µ.

Re-write cost C [γ] using 3 ingredients

I DeFinetti-Hewitt-Savage theorem: for each
γ ∈ Psym((Rd)∞) there exists a unique ν ∈ P(P(Rd)) s.th.

γ =

∫
P(Rd )

Q⊗∞dν(Q).

Note that this implies µ2 =
∫
P(Rd ) Q ⊗ Q dν(Q).

I Fourier calculus: use Q̂(z) :=
∫
e−iz·xdQ(x) Fourier trf.

I elementary probabilistic error splitting
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Proof that infinite-body minimizer = indep.meas. (details)

C∞[γ] =

∫
(Rd )∞

c(x1, x2) dγ(x1, x2, ...) =

∫
R2d

c(x , y) dµ2(x , y)

=

∫
P(Rd )

∫
R2d

`(x − y)dQ(x)dQ(y)︸ ︷︷ ︸
=
∫
Rd

̂̀(z)|Q̂(z)|2dz (by Fourier calc.)

dν(Q) (by deFinetti)

= (2π)−d
∫
Rd

̂̀(z)

∫
P(Rd )

|Q̂(z)|2dν(Q) dz (by Fubini).

Analogously

C∞[µ⊗ µ⊗ ...] = (2π)−d
∫
Rd

̂̀(z)

∣∣∣∣∣
∫
P(Rd )

Q̂(z)dν(Q)

∣∣∣∣∣
2

dz .

Subtracting both expressions yields

C∞[γ]− C∞[µ⊗ µ⊗ ...] = (2π)−d
∫
Rd

̂̀(z)︸︷︷︸
>0

varν(dQ)Q̂(z)︸ ︷︷ ︸
=0 iff ν=δQ0

=δµ

dz
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Argument rigorous up to justifying Fourier calculus steps for costs
that are not bounded and continuous; for that see our paper. Note
that one must allow general probability measures Q.
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Scaling limit 3: α→ 0 then N →∞, ctd

Behaviour of energy:

Theorem 2 (Cotar, G.F., Pass) For costs with positive Fourier trf.,
including c(x , y) = |x − y |−1, and any ρ ≥ 0,

∫
ρ = 1,√

ρ ∈ H1(R3),

lim
N→∞

lim
α→0

FHK
α [Nρ](N

2

) = J[ρ],

with the mean field cost

J[ρ] =

∫
c(x , y)ρ(x)ρ(y) dx dy .
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Proofidea
Normalized 1-body and 2-body marginals:

p1(x1) =

∫
R3(N−1)

pN(x1, .., xN)dx2..dxN

p2(x1, x2) =

∫
R3(N−2)

pN(x1, .., xN)dx3..dxN

Notation: pN 7→ p1, pN 7→ p2, etc.

Def. A probability measure p2 on R6 is said to be
N-density-representable, N ≥ 2, if there exists a symmetric
probability measure pN on R3N such that pN 7→ p2, and
infinite-density-representable if there exists a symm. p∞ on (R3)∞

s.th. p∞ 7→ p2.

N-body and infinite-body problem can be reformulated as min. over
N-repr. resp. infinitely repr. µ2

Diaconis/Freedman: for any N-representable µ2, there exists a
nearby infinitely representable µ̃2, which has the same one-point
marginal.
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Example of a pair density which is not 3-representable

Violates the necessary condition of GF et al that for any partition of
R3 into two subsets A and B,∫

A×B
p2 +

∫
B×A

p2 ≤ 2(

∫
A×A

p2 +

∫
B×B

p2)

Physically: weight of ’neutral’ configurations can at most be twice
as big as weight of ’ionic’ configurations.
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Summary

In the fixed-N, inhomogeneous dilute limit, electron correlations
converge to (strongly N-dependent) extreme correlations governed
by optimal transport.

In the fixed-N, inhomogeneous concentrated limit, electron
correlations reduce to certain Hund’s rule exchange correlations.

In the large-N, inhomogeneous concentrated limit, independence
emerges.

http://www-m7.ma.tum.de

Thanks for attention!
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