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• Nye, Bilby, etc. (~1950)

• Smooth manifold with 
a torsion field 
( =Burgers vector 
density).

Different Models for Dislocations

How to bridge between the descriptions? What kind of 
homogenization process yields a torsion field from 
singularities?

A new limit concept in differential geometry!
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Continuum Limit of Dislocations

• Overview:

• What is an edge-dislocation?

• Construction of manifolds with many dislocations.

• Dislocations become denser — what does 
converge?

• Connection to the classical model of distributed 
dislocations.
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• Remove a sector of angle 2𝜃, and glue the edges (a cone).

• Choose a point at distance d from the tip of the cone, 
cut a ray from it, and insert the sector into the cut.

• A simply connected metric space, a smooth manifold 
outside the dislocation line [p-,p+].
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right angles between them, obtaining a “rectangle”.

The building block

p+ p�
$ $ $ $

p�

d
2✓ 2✓

A

B C

D

p+p� da

b

b

a + "

Figure 1: The building block R(a, b,✓, ").

4



• Encircle the dislocation line with four straight lines with 
right angles between them, obtaining a “rectangle”.

The building block

p+ p�
$ $ $ $

p�

d
2✓ 2✓

A

B C

D

p+p� da

b

b

a + "

Figure 1: The building block R(a, b,✓, ").

4

" = 2d sin ✓
• Denote the lengths of these lines by a, b, b, and a+ε, 

where                       is the dislocation magnitude.
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Manifolds with many dislocations
• Glue together n2 building blocks, such that:

• Each with the same cone angle 2𝜃 and with 
dislocation magnitude ε/n2.

• The boundary consists of straight lines of lengths a, b, 
b, and a+ε.

• The rectangular properties of the blocks ensure us that 
the gluing lines and corners are smooth. 
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• An consists of geodesics w.r.t. the canonical         
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Metric limit: unique by properties of GH convergence.
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Metric limit: unique by properties of GH convergence.

Is the limit parallel-transport well-defined?  
Does it depend on the choice of the embeddings Fn and 
the parallel frame fields (∂x,∂y)?
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Then (M,g,Π) is defined uniquely, that is, independent of the 
choice of embeddings and frame fields.
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Thank you for your attention!


