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Introduction

First realization of Bose-Einstein Condensation (BEC) in cold atomic gases in 1995:

In these experiments, a large num-
ber of (bosonic) atoms is confined to
a trap and cooled to very low tem-
peratures. Below a critical tem-
perature condensation of a large
fraction of particles into the same
one-particle state occurs.

Interesting quantum phenomena arise, like the appearance of quantized vortices and
superfluidity. The latter is related to the low-energy excitation spectrum of the system.

BEC was predicted by Einstein in 1924 from considerations of the non-interacting Bose
gas. The presence of particle interactions represents a major difficulty for a rigorous
derivation of this phenomenon.
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Quantum Mechanics 101

At low temperature, quantum mechanics determines the motion of the particles.

Allowed quantum states ψj determined by
Schrödinger’s equation

−∆ψj(x) + V (x)ψj(x) = Ejψj(x)

with ∆ =
∑3

i=1

(
∂/∂x(i)

)2
. Mathematically

extremely well understood. Explicit solutions
for some potentials V (x), e.g., harmonic os-
cillator V (x) = |x|2.

R. Seiringer – Excitation Spectrum for Many-Body Quantum Systems – October 2, 2014 Nr. 4



Bosons and Fermions

Indistinguishable particles in nature come in two types: bosons (fermions) have
permutation-(anti-)symmetric wavefunctions

Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = (−1)︸︷︷︸
for fermions

Ψ(x1, . . . , xj , . . . , xi, . . . , xN )

If one neglects interactions among the
particles, Ψ(x1, . . . , xN ) is just an (anti-)
symmetrized product of functions

ψk1(x1)ψk2(x2) · · ·ψkN
(xN )

with ψk appearing nk times, say. For
fermions, nk ∈ {0, 1} (Pauli exclusion
principle), for bosons nk ∈ {0, 1, . . . , N}.

Bosons at zero temperature display complete Bose-Einstein condensation.
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The Bose Gas: A Quantum Many-Body Problem

Quantum-mechanical description in terms of the Hamiltonian for a gas of N bosons
with pair-interaction potential v(x). In appropriate units,

HN = −
N∑
i=1

∆i +
∑

1≤i<j≤N

v(xi − xj)

The kinetic energy is described by the ∆, the Laplacian on a box [0, L]3, with periodic
boundary conditions.

As appropriate for bosons, H acts on permutation-symmetric wave functions
Ψ(x1, . . . , xN ) in

⊗N
L2([0, L]3).

The interaction v is assumed to be repulsive and of short range.

Example: hard spheres, v(x) = ∞ for |x| ≤ a, 0 for |x| > a.
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Quantities of Interest

• Ground state energy

E0(N,L) = inf specHN

In particular, energy density in the thermodynamic limit N → ∞, L→ ∞ with
N/L3 = ϱ fixed, i.e.,

e(ϱ) = lim
L→∞

E0(ϱL
3, L)

L3

• At positive temperature T = β−1 > 0, one looks at the free energy

F (N,L, T ) = − 1

β
lnTr exp(−βHN )

and the corresponding energy density in the thermodynamic limit

f(ϱ, T ) = lim
L→∞

F (ϱL3, L, T )

L3
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• The one-particle density matrix of the ground state Ψ0 (or any other state) is
given by the integral kernel

γ0(x, x
′) = N

∫
R3(N−1)

Ψ0(x, x2, . . . , xN )Ψ∗
0(x

′, x2, . . . , xN ) dx2 · · · dxN

It satisfies 0 ≤ γ0 ≤ N as an operator, and Tr γ0 = N .

Bose-Einstein condensation in a state means that the one-particle density ma-
trix γ0 has an eigenvalue of order N , i.e., that ∥γ0∥∞ = O(N). The corresponding
eigenfunction is called the condensate wave function.

For Gibbs states of translation invariant systems

∥γ0∥∞ =
1

L3

∫
[0,L]6

γ0(x, x
′)dx dx′

and this being order N = ϱL3 means that γ0(x, x
′) does not decay as |x−x′| → ∞,

which is also termed long range order.

BEC is expected to occur below a critical temperature.
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Satyendra Nath Bose
(1894–1974)

Albert Einstein
(1879–1955)
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• The structure of the excitation spectrum, i.e., the spectrum of HN above the
ground state energy E0(N), and the relation of the corresponding eigenstates to the
ground state.

For translation invariant systems, HN commutes with the total momentum

P = −i
N∑
j=1

∇j

and hence one can look at their joint spectrum. Of particular relevance is the
infimum

Eq(N,L) = inf specHN ↾P=q

and one can investigate the limit

eq(ϱ) = lim
L→∞

(
Eq(ϱL

3, L)− E0(ϱL
3, L)

)
for fixed ϱ and q

For interacting systems, one expects a linear behavior of eq(ϱ) for small q.
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The Ideal Bose Gas

For non-interacting bosons (v ≡ 0), the free energy can be calculated explicitly:

f0(ϱ, T ) = sup
µ<0

[
µϱ+

1

(2π)3β

∫
R3

ln
(
1− exp(−β(p2 − µ))

)
dp

]
If

ϱ ≥ ϱc(β) ≡
1

(2π)3

∫
R3

1

eβp2 − 1
dp =

(
T

4π

)3/2

ζ(3/2)

the supremum is achieved at µ = 0 and hence ∂f0/∂ϱ = 0 for ϱ ≥ ϱc. In other words,
the critical temperature equals

T (0)
c (ϱ) =

4π

ζ(3/2)2/3
ϱ2/3

The one-particle density matrix for the ideal Bose gas is given by

γ0(x, y) = [ϱ− ϱc(β)]+ +
∑
n≥0

eβµϱn

(4πβn)3/2
e−|x−y|2/(4βn)
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The spectrum of the Laplacian on [0, L]3 with periodic boundary conditions is

σ(−∆) =

{
|p|2 : p ∈

(
2π

L
Z
)3

}

with corresponding eigenfunctions the plane waves φp(x) = L−3/2eip·x.

Hence the spectrum of the ideal gas Hamiltonian

H
(0)
N = −

N∑
i=1

∆i

is simply

σ(H
(0)
N ) =

 ∑
p∈( 2π

L Z)3
|p|2np : np ∈ N0 ,

∑
p

np = N


and the corresponding eigenfunctions are symmetrized tensor products of the φp’s.

R. Seiringer – Excitation Spectrum for Many-Body Quantum Systems – October 2, 2014 Nr. 12



Second Quantization on Fock space

In the following, it will be convenient to regard
⊗N

sym L
2([0, L]3) as a subspace of the

bosonic Fock space

F =

∞⊕
n=0

n⊗
sym

L2([0, L]3)

A basis of L2([0, L]3) is given by the plane waves L−3/2eipx for p ∈ ( 2πL Z)3, and we
introduce the corresponding creation and annihilation operators, satisfying the
CCR [

ap, aq
]
=

[
a†p, a

†
q

]
= 0 ,

[
ap, a

†
q

]
= δp,q

The Hamiltonian HN is equal to the restriction to the subspace
⊗N

sym L
2([0, L]3) of

H =
∑
p

|p|2a†pap +
1

2L3

∑
p

v̂(p)
∑
q,k

a†q+pa
†
k−pakaq

where v̂(p) =

∫
[0,L]3

v(x)e−ipxdx

denotes the Fourier transform of v.
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The Bogoliubov Approximation

At low energy and for weak interactions, one expects Bose-Einstein condensation, meaning
that a†0a0 ∼ N . Hence p = 0 plays a special role.

The Bogoliubov approximation consists of

• dropping all terms higher than quadratic in a†p and ap for p ̸= 0.

• replacing a†0 and a0 by
√
N

The resulting Hamiltonian is quadratic in the a†p and ap, and equals

HBog =
N(N − 1)

2L3
v̂(0) +

∑
p̸=0

((
|p|2 + ϱv̂(p)

)
a†pap +

1
2ϱv̂(p)

(
a†pa

†
−p + apa−p

))
with ϱ = N/L3. It can be diagonalized via a Bogoliubov transformation.
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Bogoliubov Transformation

Let bp = cosh(αp)ap + sinh(αp)a
†
−p, with

tanh(αp) =
|p|2 + ϱv̂(p)−

√
|p|4 + 2|p|2ϱv̂(p)

ϱv̂(p)

Here, we have to assume that |p|2 + 2ϱv̂(p) ≥ 0 for all p. The bp and b†p again satisfy
CCR. A simple calculation yields

HBog = EBog
0 +

∑
p ̸=0

epb
†
pbp

where

EBog
0 =

N(N − 1)

2L3
v̂(0)− 1

2

∑
p ̸=0

(
|p|2 + ϱv̂(p)−

√
|p|4 + 2|p|2ϱv̂(p)

)
and

ep =
√
|p|4 + 2|p|2ϱv̂(p)
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Consequences of the Bogoliubov Approximation

The Bogoliubov approximation thus yields the ground state energy density

eBog(ϱ) =
1

2
ϱ2v̂(0)− 1

2(2π)3

∫
R3

(
|p|2 + ϱv̂(p)−

√
|p|4 + 2|p|2ϱv̂(p)

)
dp

For small ϱ, it turns out that

eBog(ϱ) =
1

2
ϱ2

(
v̂(0)− 1

2(2π)3

∫
R3

|v̂(p)|2

|p|2
dp

)
+ 4π

128

15
√
π

(
ϱv̂(0)

8π

)5/2

+ o(ϱ5/2)

where
128

15
√
π

= −
√

8

π3

∫
R3

(
|p|2 + 1−

√
|p|4 + 2|p|2 − 1

2|p|2

)
dp

Since v̂(0)− 1
2(2π)3

∫
R3

|v̂(p)|2
|p|2 dp are the first two terms in the Born series for 8πa, the

scattering length of v, this leads to the prediction

e(ϱ) = 4πaϱ2
(
1 +

128

15
√
π

√
ϱa3 + o(ϱ1/2)

)
[Lee, Huang, Yang, 1957]
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The Excitation Spectrum in the Bogoliubov Approximation

The spectrum of HBog − EBog is obviously given by∑
p

epnp with np ∈ N0

The corresponding eigenstates can be constructed out of the ground state by elementary
excitations

b†pn
· · · b†p1

Ψ0

with b†p = cosh(αp)a
†
p + sinh(αp)a−p.

One can also calculate the ground state en-
ergy Eq in a sector of total momentum q, and
arrives at

eq(ϱ) = lim
L→∞

(
EBog

q − EBog
0

)
= subadditive hull of ep = inf∑

p pnp=q

∑
p

epnp
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Validity of the Bogoliubov Approximation

There are only few rigorous results concerning the validity of the Bogoliubov approximation:

• Quite generally, one can show that the pressure in the thermodynamic limit
is unaffected by the substitution of a†0 and a0 (or any other mode) by a c-number
[Ginibre 1968; Lieb, Seiringer, Yngvason, 2005; Sütő, 2005]

• The exactly solvable Lieb-Liniger model of one-dimensional bosons

HN =
N∑
j=1

− ∂2

∂z2j
+ g

∑
1≤i<j≤N

δ(zi − zj)

on
⊗N

sym L
2([0, L]). The Bogoliubov approximation for the ground state energy

and the excitation spectrum becomes exact in the weak coupling/high density limit
g/ϱ→ 0.
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Validity of the Bogoliubov Approximation

• For charged bosons in a uniform background (“jellium”) Foldy’s law

e(ϱ) ≈ Cϱ5/4

for the ground state energy density has been verified in [Lieb, Solovej, 2001]. Again,
the Bogoliubov approximation becomes exact in the high density limit.

• The leading term in the ground state energy of the low density Bose gas,

e(ϱ) ≈ 4πaϱ2

was proved to be correct in [Dyson, 1957] and [Lieb, Yngvason, 1998]. An upper
bound of the conjectured form

4πaϱ2
(
1 +

128

15
√
π

√
ϱa3 + o(ϱ1/2)

)
was proved in [Yau, Yin, 2009].
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The Bogoliubov Approximation at Low Density

For small ϱ, the Bogoliubov approximation can only be strictly valid if

• The third term in the Born series for the scattering length is negligible

• The second term is large compared with a(a3ϱ)1/2.

Consider an interaction potential of the form

a0
R3

v(x/R)

for “nice” v with
∫
v = 8π, and R a (possibly density-dependent) parameter.

The conditions are then
a3

R2
≪ a(a3ϱ)1/2 ≪ a2

R

or a/R ∼ (a3ϱ)1/2−δ with 0 < δ < 1/4. Note that δ < 1/6 corresponds to R≫ ϱ−1/3.

In [Giuliani, Seiringer, 2009], LHY is proved for small δ. Extension to δ < 1/6+ ε in [Lieb,
Solovej, in preparation].
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The Mean-Field (Hartree) Limit

Consider L = 1, for simplicity. The Hamiltonian for a gas of N bosons confined to the
unit torus T3, is, in appropriate units,

HN = −
N∑
i=1

∆i +
1

N − 1

∑
1≤i<j≤N

v(xi − xj)

The interaction is weak and we write it as (N−1)−1v(x). The case of fixed, N -independent
v corresponds to the mean-field or Hartree limit.

The ground state energy is determined, to leading order, by minimizing over product
states ϕ(x1) · · ·ϕ(xN ). Bogoliubov’s theory describes fluctuations around such product
states.

For our analysis of the excitation spectrum, we assume that v(x) is bounded and of positive
type, i.e.,

v(x) =
∑

p∈(2πZ)3
v̂(p)eip·x with v̂(p) ≥ 0 ∀p ∈ (2πZ)3
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Quantities of Interest

• Ground State Energy, given by

E0(N) = inf specHN

For fixed (i.e., N -independent) v, it is easy to see that E0(N) = 1
2Nv̂(0) + O(1).

Can one compute the O(1) term?

• Excitation Spectrum. What is the spectrum of HN −E0(N)? Does it converge
as N → ∞? Is the Bogoliubov approximation valid? The latter predicts a
dispersion law for elementary excitations that is linear for small momentum.

• Bose-Einstein condensation, concerning the largest eigenvalue of the one-
particle density matrix

⟨f |γ|g⟩ = N

∫
f(x)Ψ(x, x2, . . . , xN )g(y)Ψ(y, x2, . . . , xN ) dx dy dx2 · · · dxN

For fixed v, one easily sees that ∥γ∥ ≥ N −O(1) in the ground state.
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Main Results

THEOREM 1. [S, 2011] The ground state energy E0(N) of HN equals

E0(N) =
N

2
v̂(0) + EBog +O(N−1/2)

with

EBog = −1

2

∑
p̸=0

(
|p|2 + v̂(p)−

√
|p|4 + 2|p|2v̂(p)

)
.

Moreover, the excitation spectrum of HN − E0(N) below an energy ξ is equal to

∑
p∈(2πZ)3\{0}

ep np +O
(
ξ3/2N−1/2

)
where

ep =
√
|p|4 + 2|p|2v̂(p)

and np ∈ {0, 1, 2, . . . } for all p ̸= 0.
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Momentum Dependence

Corollary 1. Let EP (N) denote the ground state energy of HN in the sector of total
momentum P . We have

EP (N)− E0(N) = min
{np},

∑
p pnp=P

∑
p ̸=0

ep np + O
(
|P |3/2N−1/2

)

In particular,

EP (N)− E0(N) ≥ |P |min
p

√
2v̂(p) + |p|2 +O(|P |3/2N−1/2)

The linear behavior in |P | is important for the superfluid behavior of the system. Ac-
cording to Landau, the coefficient in front of |P | is, in fact, the critical velocity for
frictionless flow.
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The Spectrum

Note that under the unitary transformation U = exp(−iq ·
∑N

j=1 xj), q ∈ (2πZ)3,

U†HNU = HN +N |q|2 − 2q · P ,

where P = −i
∑N

j=1 ∇j denotes the total momentum operator. Hence our results
apply equally also to the parts of the spectrum of HN with excitation energies close to
N |q|2, corresponding to collective excitations where the particles move uniformly with
momentum q.
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Generalizations

• Inhomogeneous systems in a trap [Grech, Seiringer, 2012], where the condensate
is determined by minimizing the Hartree functional∫

R3

(
|∇φ(x)|2 + V (x)|φ(x)|2

)
dx+

1

2

∫∫
R3×R3

|φ(x)|2v(x− y)|φ(y)|2dx dy

• More general types of kinetic energy and interaction operators [Lewin, Nam, Serfaty,
Solovej, 2013]

• Weakly N -dependent v, scaling to a δ-function as N → ∞ [Dereziński, Napiór-
kowski, 2013]

• Collective excitations, where the condensation occurs in a (non-linear) excited
state of the Hartree functional [Nam, Seiringer, 2014]
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The Bogoliubov Approximation

In the language of second quantization,

HN =
∑

p∈(2πZ)3
|p|2a†pap +

1

2(N − 1)

∑
p

v̂(p)
∑
q,k

a†q+pa
†
k−pakaq

The Bogoliubov approximation consists of

• replacing a†0 and a0 by
√
N

• dropping all terms higher than quadratic in a†p and ap, p ̸= 0.

The resulting quadratic Hamiltonian is N
2 v̂(0) +HBog, where

HBog =
∑
p ̸=0

((
|p|2 + v̂(p)

)
a†pap +

1
2 v̂(p)

(
a†pa

†
−p + apa−p

))
It is diagonalized via a Bogoliubov transformation bp = cosh(αp)ap + sinh(αp)a

†
−p,

yielding
HBog = EBog +

∑
p ̸=0

epb
†
pbp
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Ideas in the Proof

The proof consists of two main steps:

1. Show that HN is well approximated by an operator similar to the Bogoliubov Hamil-
tonian HBog, but with

a†p → c†p :=
a†pa0√
N

, ap → cp :=
apa

†
0√
N

The resulting operator is quadratic in c†p and cp, and hence particle number conserv-
ing.

2. With dp = cosh(αp)cp + sinh(αp)c
†
−p, analyze the spectrum of∑
p̸=0

epd
†
pdp

These do not satisfy CCR anymore, but they do approximately on the subspace
where a†0a0 is close to N .
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Step 1: Approximation by a quadratic Hamiltonian

It is easy to see that

N − a†0a0 ≤ const. [1 +HN − E0(N)]

This proves that if the excitation energy is≪ N , most particles occupy the zero momentum
mode (Bose-Einstein condensation).

To show that cubic and quartic terms in a†p and ap, p ̸= 0, in the Hamiltonian are negligible,
one proves a stronger bound of the form(

N − a†0a0

)2

≤ const.
[
1 + (HN − E0(N))

2
]

It implies that also the fluctuations in the number of particles outside the condensate are
suitably small.
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The first statement follows easily from positivity of v̂(p):

∑
p∈(2πZ)3\{0}

v̂(p)

∣∣∣∣∣∣
N∑
j=1

eipxj

∣∣∣∣∣∣
2

≥ 0

which can be rewritten as ∑
1≤i<j≤N

v(xi − xj) ≥
N2

2
v̂(0)− N

2
v(0)

Thus

HN ≥ −
N∑
i=1

∆i +
N

2
v̂(0)− N

2(N − 1)
(v(0)− v̂(0)) .

The statement follows since −
∑N

i=1 ∆i ≥ (2π)2(N − a†0a0).

For the second statement one has to work a bit more, and we skip the proof here.
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An Algebraic Identity

We conclude that HN is, at low energy, well approximated by

N

2
v̂(0) +

1

2

∑
p ̸=0

[
Ap

(
c†pcp + c†−pc−p

)
+Bp

(
c†pc

†
−p + cpc−p

)]
with Ap = |p|2 + v̂(p) and Bp = v̂(p). A simple identity (not using CCR!) is

Ap

(
c†pcp + c†−pc−p

)
+Bp

(
c†pc

†
−p + cpc−p

)
=

√
A2

p −B2
p


(
c†p + βpc−p

)(
cp + βpc

†
−p

)
1− β2

p

+

(
c†−p + βpcp

)(
c−p + βpc

†
p

)
1− β2

p


− 1

2

(
Ap −

√
A2

p −B2
p

)(
[cp, c

†
p] + [c−p, c

†
−p]

)
,

where

βp =
1

Bp

(
Ap −

√
A2

p −B2
p

)
if Bp > 0 , βp = 0 if Bp = 0.
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Step 2: The spectrum of d†
pdp

The usual Bogoliubov transformation is of the form

e−Xape
X = cosh(αp)ap + sinh(αp)a

†
−p

where
X =

1

2

∑
p̸=0

αp

(
a†pa

†
−p − apa−p

)
This uses the CCR [ap, a

†
q] = δp,q. Our operators cp = apa

†
0/
√
N satisfy[

cp, c
†
q

]
= δp,q

a0a
†
0

N
−
apa

†
q

N

which allows us to conclude that

e−Xape
X =

dp︷ ︸︸ ︷
cosh(αp)cp + sinh(αp)c

†
−p + Error

with X as before, but with ap and a†p replaced by cp and c†p, respectively. Moreover, the

error is (relatively) small as long as (N − a†0a0)
2 ≪ N2.
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Conclusions

• First rigorous results on the excitation spectrum of an interacting Bose gas, in
a suitable limit of weak, long-range interactions.

• With the notable exception of exactly solvable models in one dimension, this is the
only model where rigorous results on the excitation spectrum are available.

• Verification of Bogoliubov’s prediction that the spectrum consists of elementary
excitations, with energy that is linear in the momentum for small momentum. In
particular, Landau’s criterion for superfluidity is verified.

• For the future: more general interactions, less restrictive parameter regime, ther-
modynamic limit, dilute gas (Gross-Pitaevskii) limit, relation to superfluidity, . . .
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Open Problems

• Existence of Bose-Einstein condensation in the thermodynamic limit

• Correction terms to the energy, validity of the Lee-Huang-Yang formula in the
low density limit

• Low energy excitation spectrum in the thermodynamic limit, and its relation to
superfluidity

• . . .
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