

McMaster University





University of Waterloo

## THE FIELDS INSTITUTE FOR RESEARCH IN MATHEMATICAL SCIENCES

## **GEOMETRIC MECHANICS SEMINARS**

### **SPEAKER:**

# UTE A. MUELLER Arnold Sommerfeld Institut fuer Theoretische Physik TU Clausthal, Germany

#### On the Topic:

# "Reproducing Kernel Hilbert Spaces and their Relation to Quantisation Methods"

Let X be a locally compact space, and  $\mathcal{H}$  a separable Hilbert space. A reproducing kernel is a map  $K : X \times X \longrightarrow \mathcal{L}(\mathcal{H})$  with the following properties:

- $\forall x \in X, K(, x) \in \mathcal{H},$
- $\forall x \in X \forall \psi \in \mathcal{H}, \psi(x) = (K(, x)\psi)$ , where (, ) denotes the inner product in  $\mathcal{H}$

 $\mathcal{H}$  together with the map K is called a reproducing kernel Hilbert space. We exhibit two regimes in which reproducing kernel Hilbert spaces

emerge as a natural tool while quantising a physical system. In the first case we give a quantisation rule given by means of a positive operator valued measure of the phase space of a physical system. Under the assumption that the positive operator valued measure possesses a

density, we may then realise it as positive operator valued measure possesses a reproducing kernel Hilbert space. As a consequence the observables of the system are relaised in terms of the reproducing kernel.

In the second case the kernel is used to construct a quantisation of both the states as well as the observables of the system in question.

# Tuesday, April 27, 1993

### 3:30 pm, room 3018, at The Fields Institute

185 Columbia Street West, Waterloo, Ontario N2L 5Z5 Telephone: (519) 725-0096 Fax: (519) 725-0704 Supported by the Ministry of Colleges and Universities of Ontario and the Natural Sciences and Engineering Research Council of Canada