

McMaster University

University of Waterloo

THE FIELDS INSTITUTE FOR RESEARCH IN MATHEMATICAL SCIENCES

GENERAL RESEARCH SEMINARS IN DYNAMICAL SYSTEMS

SPEAKER:

BERND KRAUSKOPF Department of Mathematics University of Groningen

On the Topic:

On the Bifurcation Set of $z = e^{i\alpha}z + e^{i\pi}zlzl^2 + b\overline{z}^3$

We consider the equation $\dot{z} = e^{i\alpha}z + e^{i\varphi}z|z|^2 + b\bar{z}^3$, where $\alpha \in (-\pi, \pi], \varphi \in [\pi, \frac{3}{2}\pi]$ and $b \in \mathbb{R}^+$. The (b, φ) -plane of this equation is a transformation of the well known A-plane of the model equation $\dot{z} = e^{i\alpha}z + Az|z|^2 + \bar{z}^3$, see [A88], [BK80], [Cw90] and [K93]. We discribe how the parameter space (b, φ, α) is structured by surfaces of codimension one bifurcations. These surfaces intersect in curves of codimension two bifurcations, the projections of which onto the (b, φ) -plane form boundaries between regions of topologically different bifurcation sequences under variation of α . These sequences can be obtained from our model by test drilling along α for a given point of the (b, φ) -plane.

It is an open question if there are more than the known boundary lines. The analysis of the bifurcation set can be considered as a step to answer this question. In particular our model casts some light on the nature of the point $(b, \varphi) = (1, \frac{3}{2}\pi)$, corresponding to A = -i, where all codimension two curves originate.

Wednesday, September 15, 1993

3:30 pm, room 3018

at

The Fields Institute

185 Columbia Street West, Waterloo, Ontario N2L 5Z5 Telephone: (519) 725-0096 Fax: (519) 725-2726 Supported by the Ministry of Colleges and Universities of Ontario and the Natural Sciences and Engineering Research Council of Canada