Learning-Augmented Algorithms for Safety-Critical, Carbon-Aware Systems
Making use of modern black-box AI tools such as deep reinforcement learning is potentially transformational for safety-critical systems crucial to the sustainability of our infrastructure such as data centers, the electricity grid, transportation, and beyond. However, such machine-learned algorithms typically do not have formal guarantees on their worst-case performance, stability, or safety. So, while their performance may improve upon traditional approaches in “typical” cases, they may perform arbitrarily worse in scenarios where the training examples are not representative due to, e.g., distribution shift. Thus, a challenging open question emerges: Is it possible to provide guarantees that allow black-box AI tools to be used in safety-critical applications? In this talk, I will provide an overview of an emerging area studying learning-augmented algorithms that seeks to answer this question in the affirmative. I will survey recent results in the area and describe applications of these results to the design of sustainable data centers and control of the smart grid.
Biography: Adam Wierman is a Professor in the Department of Computing and Mathematical Sciences at Caltech. He received his Ph.D., M.Sc., and B.Sc. in Computer Science from Carnegie Mellon University and has been a faculty at Caltech since 2007. Adam’s research strives to make the networked systems that govern our world sustainable and resilient. He is best known for his work spearheading the design of algorithms for sustainable data centers and is co-author of a recent book on “The Fundamentals of Heavy-tails”. He is a recipient of multiple awards, including the ACM Sigmetrics Rising Star award, the ACM Sigmetrics Test of Time award, the IEEE Communications Society William R. Bennett Prize, multiple teaching awards, and is a co-author of papers that have received “best paper” awards at a wide variety of conferences across computer science, power engineering, and operations research.