Neural Ordinary Differential Equations
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably differentiate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
David Duvenaud is an assistant professor in computer science and statistics at the University of Toronto. He holds a Canada Research Chair in generative models. His postdoctoral research was done at Harvard University, where he worked on hyperparameter optimization, variational inference, and chemical design. He did his Ph.D. at the University of Cambridge, studying Bayesian nonparametrics with Zoubin Ghahramani and Carl Rasmussen. David spent two summers in the machine vision team at Google Research, and also co-founded Invenia, an energy forecasting and trading company.